AQAH

A-level
COMPUTER SCIENCE
7517/1

Paper 1

Mark scheme
June 2022

Version: 1.0 Final

226 A7517 /1 /7 MmsS

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant
guestions, by a panel of subject teachers. This mark scheme includes any amendments made at the
standardisation events which all associates participate in and is the scheme which was used by them in
this examination. The standardisation process ensures that the mark scheme covers the students’
responses to questions and that every associate understands and applies it in the same correct way.
As preparation for standardisation each associate analyses a number of students’ scripts. Alternative
answers not already covered by the mark scheme are discussed and legislated for. If, after the
standardisation process, associates encounter unusual answers which have not been raised they are
required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and
expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark
schemes on the basis of one year’'s document should be avoided; whilst the guiding principles of
assessment remain constant, details will change, depending on the content of a particular examination

paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own
internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third
party even for internal use within the centre.

Copyright © 2022 AQA and its licensors. All rights reserved.

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The
descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as
instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the
descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in
the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it
meets this level, and so on, until you have a match between the level descriptor and the answer. With
practice and familiarity you will find that for better answers you will be able to quickly skip through the
lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in
small and specific parts of the answer where the student has not performed quite as well as the rest. If
the answer covers different aspects of different levels of the mark scheme you should use a best fit
approach for defining the level and then use the variability of the response to help decide the mark within
the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be
placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate
marks can help with this. The exemplar materials used during standardisation will help. There will be an
answer in the standardising materials which will correspond with each level of the mark scheme. This
answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer
with the example to determine if it is the same standard, better or worse than the example. You can then
use this to allocate a mark for the answer based on the Lead Examiner’'s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and
assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

A-level Computer Science
Paper 1 (7517/1) — applicable to all programming languages A, B, C, D and E

June 2022

The following annotation is used in the mark scheme:

; — means a single mark

1 — means an alternative response

/ — means an alternative word or sub-phrase
A. — means an acceptable creditworthy answer
R. — means reject answer as not creditworthy
NE. — means not enough

l. — means ignore

DPT. —means ‘Don't penalise twice’. In some questions a specific error made by a candidate, if
repeated, could result in the loss of more than one mark. The DPT label indicates that this
mistake should only result in a candidate losing one mark, on the first occasion that the error is
made. Provided that the answer remains understandable, subsequent marks should be
awarded as if the error was not being repeated.

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Examiners are required to assign each of the candidate’s responses to the most appropriate level
according to its overall quality, and then allocate a single mark within the level. When deciding upon a
mark in a level examiners should bear in mind the relative weightings of the assessment objectives

eg

In question 05.1, the marks available for the AO3 elements are as follows:

AO3 (design) 4 marks
AQO3 (programming) 8 marks

Where a candidate’s answer only reflects one element of the AO, the maximum mark they can receive
will be restricted accordingly.

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question

Marks

01

All marks AO1 (knowledge)

Algorithm Time Complexity
Binary tree search O(log n)
Bubble sort O(n?)
Linear search o(n)
Merge sort O(n log n)

I. missing brackets
I. missing O

Mark as follows:
1 mark: 1st row correct

1 mark: 2" row correct
1 mark: 3 row correct

A. O(n x log n) NE. O(log n)

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question

Marks

02

1

All marks for AO1 (understanding)

1. Check the queue is (not already) empty;

2. Compare the value of the front pointer with the maximum size of the array;

3. If equal then front pointer becomes one; A. index of the first position in the array
instead of one

4. Otherwise, add one to the front pointer;

Alternative answer 1

1. Check the queue is (not already) empty;

2. Compare the value of the front pointer with the maximum size of the array minus
one;

3. If equal then front pointer becomes zero; A. index of the first position in the array
instead of zero

4. Otherwise, add one to the front pointer;

Alternative answer 2

1. Check the queue is (not already) empty;

2. Add one to the front pointer;

3. Compare the value of the front pointer with the maximum size of the array;

4. 1f equal then front pointer becomes zero; A. index of the first position in the array
instead of zero

Alternative answer 3

1. Check the queue is (not already) empty;

2. Add one to the front pointer;

3. Compare the value of the front pointer with the maximum size of the array plus
one;

4. 1f equal then front pointer becomes one; A. index of the first position in the array
instead of one

Alternative answer 4

1. Check the queue is (not already) empty;

2. Add one to the front pointer;

3. Use modulus/modulo operator/function with new value of front pointer;
4. Use modulus/modulo operator/function with maximum size of array;

Max 3 if any errors

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question

Marks

02

2

All marks for AO1 (understanding)

Static data structures have storage size determined at compile-time / before
program is run / when program code is translated / before the data structure is first
used

I

dynamic data structures can grow / shrink during execution / at run-time

1

static data structures have fixed (maximum) size // size of dynamic data structures
can change;

Static data structures can waste storage space / memory if the number of data
items stored is small relative to the size of the structure

1

dynamic data structures only take up the amount of storage space required for the
actual data;

Dynamic data structures require (memory to store) pointers to the next item(s) //
static data structures (typically) do not need (memory to store) pointers;

Static data structures (typically) store data in consecutive memory locations //
dynamic data structures (typically) do not store data in consecutive memory

locations;

Max 3

02

Mark is for AO2 (apply)

Jib;

02

Mark is for AO2 (apply)

Jib;

02

All marks for AO1 (understanding)

(Until the queue is empty) repeatedly remove / delete (the front item) from the
queue and push it on to the stack;

(Until the stack is empty) repeatedly pop items from the stack and add them to the
(rear of the) queue;

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question

Marks

03

1

Mark is for AO2 (analyse)

Statement 1 can’t be correct because it means Statement 5 / Statement 6 is true
which means Statement 1 is false;

Statement 1 can’t be correct because it would mean Statement 2 is correct which
would mean all of the other statements have to be both correct and incorrect;

Statement 1 can’t be correct because it would mean Statement 4 is correct which
means that Statements 2 and 3 have to be both correct and incorrect;

Questions says only one of the statements is true so Statement 1 can’t be true as
that means more than one statement would be true;

Max 1

03

Mark is for AO2 (analyse)

(Statement) 5;

03

All marks AO2 (analyse)
Statement 3 can’t be correct because Statement 1 is false;

Statement 3 can’t be correct because the question says only one of the statements
is correct;

Statement 3 can’t be correct because that would mean Statement 2 would be a
contradiction as this would mean Statement 3 would have to be incorrect;

If Statement 2 is true then Statement 4 has to be false. As Statements 1 and 3 are

false for Statement 4 to be false Statement 2 has to be false as well (otherwise one

of the above would be true). This is a contradiction so Statement 2 can’t be true;

Statements 1, 2 and 3 are false so Statement 4 is false;

If Statement 6 is true then 5 has to be false implying at least one of Statements 1 to

4 have to be true but they are all false so Statement 6 has to be false;

Max 2

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question Marks
04 1 | All marks AO1 (understanding) 2
True or
False?
Calculates the shortest path between a node and other True
nodes in a graph
Can be used to prove the Halting Problem cannot be solved False
Can be used with both directed and undirected graphs True
Can be used with both weighted and unweighted graphs False
Mark as follows:
1 mark: three rows correct
2 marks: all rows correct.
04 2 | Mark is for AO1 (knowledge) 1
A subroutine that calls itself;
04 | 3 | All marks AO2 (apply) 2

Count Value
returned
0
1 False

Mark as follows:

1. Column for Count is correct |. repeated consecutive instances of values

I. blank cells
2.Value returned is False

Max 1 if any errors

10

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

04

Mark is for AO2 (analyse)

0|12
0 011
1 0O
2 0
3

A. any suitable indicators used instead of 0 and 1
A. blank cell instead of 0 R. if usage inconsistent

11

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

04

All marks AO2 (apply)

Visited
Subroutine v P [0] [1] [2] [3] N
call
False |False |False |False

G(0, -1) 0 -1 | True 1
G(1, 0) 1 0 True 0

3
G(3, 1) 3 1 True 0
G(1, 0)
G(0, -1)
Final value True
returned:

Mark as follows:

1.Visited[0] setto True and then not changed

2.Visited[1] setto True and then not changed, Visited[3] setto True
and then not changed, Visited[2] always has value of False

3. Second subroutine callis G (1, 0) |I. repeated consecutive instances of this call

4. Third and final subroutine call is G (3, 1) I. repeated consecutive instances of
this call I. missingcallsG(1, 0) and G(0, -1)

5. Value returned is True

6. N column contains correct values A. values of 3 in 2" last cell for N and value of
1in last cell for N, instead of the two blank cells

Max 5 if any errors

12

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

04 Mark is for AO2 (analyse) 1
Determine if a graph contains a cycle or not;

04 Mark is for AO2 (analyse) 1
Depth-first search;

04 Mark is for AO2 (analyse) 1

The graph is a tree;

13

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question

Marks

05 1

4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark Scheme

Level Description

Mark
Range

4 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution that meets most of the
requirements. All of the appropriate design decisions
have been taken. To award 12 marks, all of the
requirements must be met.

10-12

3 There is evidence that a line of reasoning has been
followed to produce a logically structured program. The
program displays relevant prompts, inputs the required
string, has at least one iterative structure and at least one
selection structure and uses appropriate variables to
store most of the needed data. An attempt has been
made to swap the positions of vowels in the string,
although this may not work correctly under all
circumstances. The solution demonstrates good design
work as most of the correct design decisions have been
made.

7-9

2 A program has been written and some appropriate,
syntactically correct programming language statements
have been written. There is evidence that a line of
reasoning has been partially followed as although the
program may not have the required functionality, it can
be seen that the response contains some of the
statements that would be needed in a working solution.
There is evidence of some appropriate design work as
the response recognises at least one appropriate
technique that could be used by a working solution,
regardless of whether this has been implemented
correctly.

1 A program has been written and a few appropriate
programming language statements have been written but
there is no evidence that a line of reasoning has been
followed to arrive at a working solution. The statements
written may or may not be syntactically correct. Itis
unlikely that any of the key design elements of the task
have been recognised.

1-3

12

14

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Guidance
Evidence of AO3 design — 4 points:
Evidence of design to look for in responses:

1. ldentifying that string concatenation is needed when swapping vowels in the
string // identifying that swapping items in a list of characters is needed.

2. ldentifying that a loop is needed that repeats a number of times determined by
the word entered by the user // identifying that a loop is needed that repeats a
number of times determined by the number of vowels in the word entered by the

user.

3. ldentifying that two integer variables are needed to store positions of characters
in the string // identifying that an ordered list of vowels in the string needs to be

created // identifying one integer variable is needed to show the distance from

the start and end of the string (R. if no attempt to use this integer with the start

and end positions of the string).

4. Selection structure that checks if a character is a vowel A. more than one
selection structure used R. if no attempt at comparing with each of the five
vowels.

Note that AO3 (design) points are for selecting appropriate techniques to use to
solve the problem, so should be credited whether the syntax of programming

language statements is correct or not and regardless of whether the solution works.

Evidence for AO3 programming — 8 points:
Evidence of programming to look for in response:

5. Suitable prompt asking user to enter a string followed by user input being
assigned to appropriate variable.

Iterative structure that repeats a number of times that is sufficient to check all
the characters in the string.

Correctly checks if a character is a vowel.

Correctly checks all characters in the string to see if they are vowels.
Swaps/moves the position of two characters in the string.

0. Program only moves/changes the position of vowels.

1

o

HBE©oN

vowels or identify that there are less than two vowels.
12. Program works correctly under all circumstances.

I. additional loop to get program to repeat multiple times.

DPT. mark points 7 and 8 if only checks for some vowels or includes at most one
non-vowel character.

Max 11 if any errors

. Program works correctly if a string contains one vowel and works correctly if a
string contains no vowels. R. if program does not attempt to swap positions of

15

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question

Marks

05

2

Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 05.1, including prompts on screen capture matching those in
code.

Code for 05.1 must be sensible.

Screen capture showing the string persepolis being entered and then the string
pirsopeles being displayed and screen capture showing the string darius
being entered and then the string durias being displayed and screen capture
showing the string xerxes being entered and then the string xerxes being
displayed;

I. order of tests

ring: persepolis

Enter a string: darius
durias

16

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question

Marks

06 1

Mark is for AO2 (analyse)

Inheritance;

06 | 2

Mark is for AO2 (analyse)
Card,;
R. if spelt incorrectly

R. if any additional code
l. case

06 3

Marks are for AO1 (understanding)

Public means it can be accessed / seen outside of the class it is in;

Protected means it can be accessed / seen in the class it is in and in any
subclasses // protected means it can be accessed / seen in the class itis in and in

any classes derived / inheriting from it;

A. Protected means it can be accessed / seen by any class in the same package
(and by subclasses in any package) (Java only)

06 | 4

Mark is for AO1 (knowledge)

When a derived class / subclass has a different implementation for a method /
function / subroutine to the class it inherits from / from the base class;

17

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question Marks

07 1 | Mark is for AO2 (analyse) 1

There will end up being two copies of the second card (A. a card);
The first card (A. a card) will be overwritten;

Max 1

07 2 | Mark is for AO2 (apply) 1

Because sets are unordered // because the cards have an order;
R. because sets only allow one instance of a value to be stored

07 3 | One mark for AO2 (apply) 3
Hash algorithm / function applied to CardNumber (NE. primary key);
Two marks for AO1 (understanding)

Result indicates location that card should be stored in;

If there is already a card in that location a method is needed to deal with collisions;
A. description of any suitable method for dealing with collisions

07 4 | Mark is for AO1 (understanding) 1

Allows direct (A. faster) access to the value being looked-up

I

No need to search through the list to find a value (assuming a good choice of hash
function);

18

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question Marks
08 1 | Mark is for AO2 (analyse) 1
ProcessLockSolved;
R. if spelt incorrectly
R. if any additional code
I. case and spacing
08 2 | Mark is for AO2 (apply) 1
MaxHandSize;
A. HandSize
A. any suitable identifier that makes it clear that the constant represents the hand
size
08 3 | Mark is for AO2 (analyse) 1
gamel . txt; |. quotation marks around gamel . txt
08 4 | Mark is for AO2 (analyse) 1
To make sure no difficulty cards are put into the player’s hand;
Question Marks
09 Mark is for AO2 (analyse) 1
2;
Question Marks
10 Mark is for AO2 (apply) 1

D|P

I
[DP]

"

P|D

I
[PD];

I. use of quotes around each character
A. use of ~ and/or $ in expression as long as done correctly

19

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question

Marks

11

1

All marks for AO3 (programming)

1. Iterative structure contains code that gets the choice from the player;

2. One correct condition;

3. Both correct conditions and correct logic;

4. Displays error message under all correct circumstances and only under correct
circumstances;

Max 3 if code contains errors

11

Mark is for AO3 (evaluate)

*x SCREEN CAPTURE ****
Must match code from 11.1.
Code for 11.1 must be sensible.

Screen capture showing same message as code for 11.1 displayed when L is
entered followed by D being entered and accepted;

> U
d 5 to specify card to use:» 2

SEQUENCE: empty

Notes for examiners: ignore contents of the hand and the current score. (B)lasting
cap might be shown in list of choices or might not be. Output after entering D will be
different if a difficulty card was drawn.

20

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question

Marks

12

1

All marks for AO3 (programming)

1. Creating a new subroutine called GetNumberOfToolCards; R. other
identifiers
I. case I|. minor spelling mistakes

2. New subroutine has mechanism to return an integer and returns an integer value;
I. incorrect value A. other numeric data types

3. Iterative structure that repeats a number of times based on the size of Cards;

4. Gets type of card inside iterative structure;

5. Selection structure inside iterative structure that compares (their attempt at) type
of card with at least one of P, F or K;

6. Selection structure with correct conditions and value to return incremented by one
inside selection structure;

The following mark points relate to the P1ayGame subroutine:

7.Valid calls to GetNumberOfToolCards or GetNumberOfCards and value
returned by this call is displayed; A. alternative identifier for subroutine if
matches identifier used for mark point 1

8. Appropriate messages displayed along with values returned by calls to
GetNumberOfToolCards and GetNumberOfCards; R. if before display of

current score R. if after display of player’s hand
Alternative answer for mark points 5 and 6

5. Selection structure inside iterative structure that compares (their attempt at) type
of card with Dif;

6. Selection structure with correct condition and value incremented by one inside
selection structure, this value is subtracted from the total number of cards before
being returned to the calling routine;

Alternative answer for mark points 4 and 5
4. Gets score for card inside iterative structure;

5. Selection structure inside iterative structure that compares (their attempt at) score
for card with zero;

Max 7 if code contains errors

21

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question

Marks

12 2

Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 12.1.

Code for 12.1 must be sensible.

Screen capture(s) showing the values of 33 and 28 followed by the values of 32 and

27; (A. alternative values for the second set of numbers if there is evidence that a
difficulty card was drawn from the deck)

Enter L to load a game from a file, anything else to play a new game:>»

Not met:
Hot met:
Not met:

SEQUENCE: empty

HAND :

; card to use:>» 2

SEQUENCE: empty

HAND :

card inspect, (U)se card:»

22

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question Marks
13 1 | All marks for AO3 (programming) 9

1. Create a variable, with an appropriate name and data type, to use to keep track if
there is a blasting cap available and give variable a value of True (or equivalent)
Il create a variable, with an appropriate name and data type, to use to keep track
if blasting cap has been used and give variable a value of False (or equivalent);
R. if inside iterative structure that repeats until game is over

2. Selection structure, in appropriate place that checks for the player’s choice being
B (or suitable alternative) and appropriate modified message in GetChoice
subroutine;

3. Selection structure that checks if the player has a blasting cap (or does not have
a blasting cap);

4. If there is a blasting cap (A. incorrect condition) gets the player’s choice of
challenge; R. if value is not of integer data type, unless it is converted to be an
integer before it is used

5. If they chose to use a blasting cap (A. incorrect condition) sets the value of
variable used to indicate if there is a blasting cap to False (or equivalent);

6. Selection structure that checks player’s choice of challenge is less than or equal
to the number of challenges;

7. Selection structure that checks player’'s choice of challenge has not already been
met; R. if checks the wrong challenge

8. If conditions for both mark points 6 and 7 are met displays message saying
blasting cap has been used; I. incorrect logic for selection structure(s)

9. Changes the met status of the challenge specified by the player inside selection
structure(s) for mark points 6 and 7; . incorrect logic for selection structure(s) R.
if changes the wrong challenge

Max 8 marks if code contains errors

13 2 | Mark is for AO3 (evaluate) 1

+* SCREEN CAPTURE **

Must match code from 13.1.

Code for 13.1 must be sensible.

Screen capture(s) showing that the third condition is met after use of blasting cap

and that use of a second blasting cap is not permitted;

Notes for examiners: ignore messages about number of cards in deck and number

of tool cards in deck.

23

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

24

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Question

Marks

14

1

All marks for AO3 (programming)

Mark points 1 to 9 relate to the TrapCard class.

1. Creating a new class called TrapCard that inherits from DifficultyCard;
R. other names for class |. case and minor typos

2. Constructor calls parent class constructor and then sets Type to Trp //
Constructor sets Type to Trp and sets CardNumber to value of parameter;

3. Subroutine called Process created that overrides parent class method and
contains a call to parent class method (or equivalent);

4. lIteration structure that repeats based on the number of challenges on the
current lock;

5. Selection structure, inside iteration structure, that compares the value of a
challenge’s status with either True or False;

6. Adds challenge / index of challenge to a list if challenge has been met // after
ascertaining that at least one challenge has been met repeatedly selects a
random challenge;

7. Selects a random challenge that has been met; R. if could select a challenge
that has not been met under some circumstances

8. Changes the status of the selected challenge to not met (False); R. if multiple
challenges changed

9. If no challenges have been met then a call is made to the parent class method
(or equivalent); R. if could also set a met challenge’s status to False

10. Modified GetCardFromDeck so that trap cards are processed in the same

way as difficulty cards; R. other messages |. case and minor typos

11. Modified GetCardFromDeck so it displays the message Trap'! if a trap card
is drawn; R. other messages R. if message displayed when non-trap card is
drawn |. case and minor typos

12. Modified SetupCardCollectionFromGameFile so that it creates trap
cards instead of difficulty cards;

Max 11 if code contains errors or if other parts of the subroutines
GetCardFromDeck or SetupCardCollectionFromGameFile no longer
work correctly

12

14

Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****

Must match code from 14.1, including prompts on screen capture matching those in
code.

Code for 14.1 must be sensible.

Screen capture(s) showing that for the game from gamel. txt one of the two
challenges that was met is now shown as not met;

25

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

rap!

Difficulty encountered!

m the d

SEQUENCE:

K b

y position o

26

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

VB.Net
Question Marks
05 1 | Console.Write ("Enter a string: ") 12

Dim UserString As String = Console.ReadLine ()
Dim EndPos As Integer = UserString.Length - 1
Dim StartPos As Integer = 0
While EndPos > StartPos
If "aeiou".Contains (UserString (EndPos)) Then
If "aeiou".Contains (UserString(StartPos)) Then

Dim NewString As String = UserString.Substring(O0,

UserString (EndPos) + UserString.Substring(StartPos + 1,

1, UserString.Length - 1 - EndPos)
UserString = NewString
StartPos += 1
EndPos -= 1

Else
StartPos += 1
End If
Else
EndPos -= 1
If Not "aeiou".Contains (UserString(StartPos)) Then
StartPos += 1
End If
End If

End While

Console.WritelLine (UserString)

Console.ReadLine ()

Alternative answer

Console.Write ("Enter a string: ")
Dim UserString As String = Console.ReadLine ()
Dim EndPos As Integer = UserString.Length - 1
Dim StartPos As Integer = 0
Dim StartNewWord As String = ""
Dim EndNewWord As String = ""
While EndPos > StartPos
If "aeiou".Contains (UserString (EndPos)) Then
If "aeiou".Contains (UserString(StartPos)) Then
EndNewWord = UserString(StartPos) + EndNewWord
StartNewWord += UserString (EndPos)
StartPos += 1
EndPos -= 1
Else
StartNewWord += UserString(StartPos)
StartPos += 1

End If
Else
EndNewWord = UserString (EndPos) + EndNewWord
EndPos -= 1
If Not "aeiou".Contains (UserString(StartPos)) Then

StartNewWord += UserString(StartPos)
StartPos += 1
End If
End If
End While
If StartPos = EndPos Then

StartPos)
EndPos -

+

StartPos - 1) + UserString(StartPos) + UserString.Substring(EndPos +

27

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Console.Writeline (StartNewWord + UserString(StartPos) +
EndNewWord)
Else
Console.Writeline (StartNewWord + EndNewWord)
End If
Console.ReadLine ()

11

Function GetDiscardOrPlayChoice () As String
Dim Choice As String
Do
Console.Write (" (D)iscard or (P)lay?:> ")
Choice = Console.ReadLine () .ToUpper ()
If Choice <> "D" And Choice <> "P" Then
Console.WritelLine ("Not a valid choice.")
End If
Loop While Choice <> "D" And Choice <> "P"
Return Choice
End Function

12

Public Sub PlayGame ()

While Not LockSolved And Not GameOver

Console.WriteLine ()

Console.WriteLine ("Current score: " & Score)

Console.WritelLine ("Cards left in deck: " &
Deck.GetNumberOfCards ())

Console.WriteLine ("Tool cards left in deck: " &
Deck.GetNumberOfToolCards ())

Console.WritelLine (CurrentLock.GetLockDetails ())

Public Function GetNumberOfToolCards() As Integer
Dim Count As Integer = 0
For Each C In Cards
If {"K", "F", "P"}.Contains (C.GetDescription() (0)) Then
Count += 1
End If
Next
Return Count
End Function

13

Function GetChoice () As String
Console.WriteLine ()
Console.Write (" (D) iscard inspect, (B)lasting cap, (U)se card:>
Dim Choice As String = Console.ReadLine () .ToUpper ()
Return Choice
End Function

Public Sub PlayGame ()

If Locks.Count > 0 Then
GameOver = False
CurrentLock = New Lock()
Dim BlastingCap As Boolean = True
SetupGame ()

")

28

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

MenuChoice = GetChoice ()
Select Case MenuChoice
Case "B"

If BlastingCap Then
Console.Write("Challenge to blast? ")
Dim BlastChoice As Integer = Console.ReadLine() - 1
BlastingCap = False
If BlastChoice < CurrentLock.GetNumberOfChallenges () Then
If Not CurrentlLock.GetChallengeMet (BlastChoice) Then
CurrentLock.SetChallengeMet (BlastChoice, True)
Console.WriteLine ("Blasting cap used.")
Console.WriteLine (CurrentLock.GetLockDetails ())
End If
End If
End If
Case "D"
Console.WritelLine (Discard.GetCardDisplay())

14

Private Sub GetCardFromDeck (ByVal CardChoice As Integer)
If Deck.GetNumberOfCards () > 0 Then
If Deck.GetCardDescriptionAt (0) = "Dif" Or
Deck.GetCardDescriptionAt (0) = "Trp" Then
Dim CurrentCard As Card =
Deck.RemoveCard (Deck.GetCardNumberAt (0))
Console.WriteLine ()

If CurrentCard.GetDescription() = "Trp" Then
Console.WriteLine ("Trap!")
End If

Console.WritelLine ("Difficulty encountered!”)

Console.WriteLine (Hand.GetCardDisplay())

Console.Write ("To deal with this you need to either lose a
key")

Console.Write (" (enter 1-5 to specify position of key) or
(D)iscard five cards from the deck:> ")

Dim Choice As String = Console.ReadLine ()

Discard.AddCard (CurrentCard)

CurrentCard.Process (Deck, Discard, Hand, Sequence,
CurrentLock, Choice, CardChoice)

End If
End If
While Hand.GetNumberOfCards () < 5 And Deck.GetNumberOfCards > O
If Deck.GetCardDescriptionAt (0) = "Dif" Or
Deck.GetCardDescriptionAt (0) = "Trp" Then

Private Sub SetupCardCollectionFromGameFile (ByVal LineFromFile As
String, ByVal CardCol As CardCollection)

For Each Item In SplitLine
If Item.Length = 5 Then
CardNumber = ToInt32 (Item(4))

Else

CardNumber = ToInt32 (Item.Substring (4, 2))
End If
If Item.Substring (0, 3) = "Dif" Then

Dim CurrentCard As New TrapCard (CardNumber)
CardCol.AddCard (CurrentCard)
Else

12

29

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Dim CurrentCard As New ToolCard(Item(0), Item(2), CardNumber)
CardCol.AddCard (CurrentCard)
End If
Next

Class TrapCard
Inherits DifficultyCard

Sub New (ByVal CardNo As Integer)
CardType = "Trp"
CardNumber = CardNo

End Sub

Public Overrides Sub Process (ByVal Deck As CardCollection, ByVal
Discard As CardCollection, ByVal Hand As CardCollection, ByVal
Sequence As CardCollection, ByVal CurrentLock As Lock, ByVal Choice
As String, ByVal CardChoice As Integer)

Dim MetChallenges As New List (Of Integer)
For Count = 0 To CurrentLock.GetNumberOfChallenges() - 1
If CurrentlLock.GetChallengeMet (Count) Then
MetChallenges.Add (Count)
End If
Next
If MetChallenges.Count = 0 Then
MyBase.Process (Deck, Discard, Hand, Sequence, CurrentLock,
Choice, CardChoice)
Else
Dim RNo As Integer = RNoGen.Next (0, MetChallenges.Count)
CurrentLock.SetChallengeMet (MetChallenges (RNo) , False)
End If

End Sub

End Class

30

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Python 3
Question Marks
05 1 | UserString = input ("Enter a string: ") 12

EndPos = len(UserString) - 1

StartPos = 0

while EndPos > StartPos:

if UserString[EndPos] in "aeiou":
if UserString[StartPos] in "aeiou":

UserString = UserString[0: StartPos] + UserString[EndPos] +
UserString[StartPos+l: EndPos] + UserString[StartPos] +
UserString[EndPos+l:1len (UserString)]

StartPos += 1

EndPos -= 1

else:
StartPos += 1
else:
EndPos -= 1
if UserString[StartPos] not in "aeiou":

StartPos += 1

print (UserString)
Alternative answer
UserString = input ("Enter a string: ")
EndPos = len(UserString) - 1
StartPos = 0
StartNewString = ""
EndNewString = ""
while EndPos > StartPos:

if UserString[EndPos] in "aeiou":

if UserString[StartPos] in "aeiou":

EndNewString = UserString[StartPos] + EndNewString

StartNewString += UserString[EndPos]

StartPos += 1

EndPos -= 1

else:
StartNewString += UserString[StartPos]
StartPos += 1
else:
EndNewString = UserString[EndPos] + EndNewString
EndPos -= 1
if UserString[StartPos] not in "aeiou":

StartNewString += UserString[StartPos]

StartPos += 1
if StartPos == EndPos:

print (StartNewString + UserString[StartPos] + EndNewString)
else:
print (StartNewString + EndNewString)

11 1 | def GetDiscardOrPlayChoice (self): 4
Choice = input (" (D)iscard or (P)lay?:> ") .upper()
while Choice !'= "D" and Choice != "P":

print ("Not a valid choice")
Choice = input(" (D)iscard or (P)lay?:> ") .upper()
return Choice

31

MARK SCHEME - A-LEVEL COMPUTER SCIENCE - 7517/1

- JUNE 2022

12 def PlayGame (self):
if len(self. TLocks) > O0:
self. SetupGame ()
while not self. GameOver:
self. LockSolved = False
while not self. LockSolved and not self. GameOver:
print ()
print ("Current score:", self. Score)
print("Cards left in deck:",
self. Deck.GetNumberOfCards())
print ("Tool cards left in deck:",
self. Deck.GetNumberOfToolCards())
print (self. CurrentLock.GetLockDetails())
def GetNumberOfToolCards (self):
Count = 0
for C in self. Cards:
if C.GetDescription() [0] in ["K", "F", "P"]:
Count +=1
return Count
13 def GetChoice (self):

print ()

Choice = input (" (D)iscard inspect, (B)lasting cap, (U)se card:>

") .upper ()
return Choice

def PlayGame (self) :
if len(self. Locks) > 0:
self. SetupGame ()
BlastingCap = True
while not self. GameOver:
self. LockSolved = False
while not self. LockSolved and not self. GameOver:

MenuChoice = self. GetChoice ()
if MenuChoice == "D":
print (self. Discard.GetCardDisplay())
elif MenuChoice == "B":
if BlastingCap:
BlastChoice = int(input("Challenge to blast? ")) -
BlastingCap = False
if BlastChoice <
self. CurrentLock.GetNumberOfChallenges() :
if not
self. CurrentLock.GetChallengeMet (BlastChoice):
self. CurrentLock.SetChallengeMet (BlastChoice,
True)
print ("Blasting cap used")
print(self. CurrentLock.GetLockDetails())
elif MenuChoice == "U":

1

32

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

14

def GetCardFromDeck (self, CardChoice):
if self. Deck.GetNumberOfCards() > O:
if self. Deck.GetCardDescriptionAt(0) in ["Dif", "Trp"]:

CurrentCard =

self. Deck.RemoveCard(self. Deck.GetCardNumberAt (0))
print ()
if CurrentCard.GetDescription() == "Trp":

print ("Trap!")

print ("Difficulty encountered!")
print (self. Hand.GetCardDisplay())

while self. Hand.GetNumberOfCards() < 5 and
self. Deck.GetNumberOfCards() > O0:
if self. Deck.GetCardDescriptionAt(0) in ["Dif", "Trp"]:
self. MoveCard(self. Deck, self. Discard,
self. Deck.GetCardNumberAt (0))
print ("A difficulty card was discarded from the deck when
refilling the hand.")

def SetupCardCollectionFromGameFile (self, LineFromFile, CardCol):

if Item[O0: 3] == "Dif":
CurrentCard = TrapCard(CardNumber)
CardCol.AddCard (CurrentCard)
else:
CurrentCard = ToolCard(Item[0], Item[2], CardNumber)
CardCol.AddCard (CurrentCard)

class TrapCard(DifficultyCard) :
def _init__ (self, CardNo):
self. CardType = "Trp"
self. CardNumber = CardNo

def Process(self, Deck, Discard, Hand, Sequence, CurrentLock,
Choice, CardChoice):
MetChallenges = []
for Count in range (CurrentLock.GetNumberOfChallenges()):
if CurrentLock.GetChallengeMet (Count) :
MetChallenges.append (Count)
if len(MetChallenges) ==
super (TrapCard, self) .Process(Deck, Discard, Hand, Sequence,
Currentlock, Choice, CardChoice)
else:

RNo = random.randint (0, len(MetChallenges) - 1)
CurrentLock.SetChallengeMet (MetChallenges[RNo], False)

12

33

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Python 2
Question Marks
05 1 | UserString = raw_input ("Enter a string: ") 12

EndPos = len(UserString) - 1

StartPos = 0

while EndPos > StartPos:

if UserString[EndPos] in "aeiou":
if UserString[StartPos] in "aeiou":

UserString = UserString[0: StartPos] + UserString[EndPos] +
UserString[StartPos+l: EndPos] + UserString[StartPos] +
UserString[EndPos+l:1len (UserString)]

StartPos += 1

EndPos -= 1

else:
StartPos += 1
else:
EndPos -= 1
if UserString[StartPos] not in "aeiou":

StartPos += 1
print UserString
Alternative answer
UserString = raw_input ("Enter a string: ")

EndPos = len(UserString) - 1
StartPos = 0
StartNewString = ""
EndNewString = ""
while EndPos > StartPos:
if UserString[EndPos] in "aeiou":
if UserString[StartPos] in "aeiou":

EndNewString = UserString[StartPos] + EndNewString

StartNewString += UserString[EndPos]

StartPos += 1

EndPos -= 1

else:
StartNewString += UserString[StartPos]
StartPos += 1
else:
EndNewString = UserString[EndPos] + EndNewString
EndPos -= 1
if UserString[StartPos] not in "aeiou":

StartNewString += UserString[StartPos]

StartPos += 1
if StartPos == EndPos:

print StartNewString + UserString[StartPos] + EndNewString
else:
print StartNewString + EndNewString
11 1 | def GetDiscardOrPlayChoice (self): 4
Choice = raw input (" (D)iscard or (P)lay?:> ") .upper ()
while Choice !'= "D" and Choice != "P":
print "Not a valid choice"
Choice = raw_input(" (D)iscard or (P)lay?:> ") .upper()
return Choice

34

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

12

def PlayGame (self):
if len(self. TLocks) > O0:
self. SetupGame ()
while not self. GameOver:
self. LockSolved = False
while not self. LockSolved and not self. GameOver:
print
print "Current score: " + str(self. Score)
print "Cards left in deck:" +
str(self. Deck.GetNumberOfCards())
print "Tool cards left in deck:" +
str(self. Deck.GetNumberOfToolCards())
print self. CurrentLock.GetLockDetails()

def GetNumberOfToolCards (self) :
Count = 0
for C in self. Cards:
if C.GetDescription() [0] in ["K", "F", "P"]:
Count +=1
return Count

13

def GetChoice(self):

print
Choice = raw_input (" (D)iscard inspect, (B)lasting cap, (U)se
card:> ") .upper ()

return Choice

def PlayGame (self) :
if len(self. Locks) > 0:
self. SetupGame ()
BlastingCap = True
while not self. GameOver:
self. LockSolved = False
while not self. LockSolved and not self. GameOver:

MenuChoice = self. GetChoice ()
if MenuChoice == "D":
print self. Discard.GetCardDisplay ()
elif MenuChoice == "B":
if BlastingCap:
BlastChoice = int(raw_input("Challenge to blast? ")) -1
BlastingCap = False
if BlastChoice <
self. CurrentLock.GetNumberOfChallenges() :
if not
self. CurrentLock.GetChallengeMet (BlastChoice):
self. CurrentLock.SetChallengeMet (BlastChoice,
True)
print "Blasting cap used"
print self. CurrentLock.GetLockDetails ()
elif MenuChoice == "U":

35

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

14

def GetCardFromDeck (self, CardChoice):
if self. Deck.GetNumberOfCards() > O:
if self. Deck.GetCardDescriptionAt(0) in ["Dif", "Trp"]:

CurrentCard =

self. Deck.RemoveCard(self. Deck.GetCardNumberAt (0))
print ()
if CurrentCard.GetDescription() == "Trp":

print "Trap!"

print "Difficulty encountered!"
print self. Hand.GetCardDisplay ()

while self. Hand.GetNumberOfCards() < 5 and
self. Deck.GetNumberOfCards() > O0:
if self. Deck.GetCardDescriptionAt(0) in ["Dif", "Trp"]:
self. MoveCard(self. Deck, self. Discard,
self. Deck.GetCardNumberAt (0))
print "A difficulty card was discarded from the deck when
refilling the hand."

def SetupCardCollectionFromGameFile (self, LineFromFile, CardCol):

if Item[O0: 3] == "Dif":
CurrentCard = TrapCard(CardNumber)
CardCol.AddCard (CurrentCard)
else:
CurrentCard = ToolCard(Item[0], Item[2], CardNumber)
CardCol.AddCard (CurrentCard)

class TrapCard(DifficultyCard) :
def _init__ (self, CardNo):
self. CardType = "Trp"
self. CardNumber = CardNo

def Process(self, Deck, Discard, Hand, Sequence, CurrentLock,
Choice, CardChoice):
MetChallenges = []
for Count in range (CurrentLock.GetNumberOfChallenges()):
if CurrentLock.GetChallengeMet (Count) :
MetChallenges.append (Count)
if len(MetChallenges) ==
super (TrapCard, self) .Process(Deck, Discard, Hand, Sequence,
Currentlock, Choice, CardChoice)
else:

RNo = random.randint (0, len(MetChallenges) - 1)
CurrentLock.SetChallengeMet (MetChallenges[RNo], False)

12

36

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

C#
Question Marks
05 1 | Console.Write ("Enter a string: "); 12
string userString = Console.ReadLine () ;
int endPos = (userString.Length - 1);
int startPos = 0;

while (endPos > startPos)
{
if ("aeiou".Contains (userString[endPos]))
{
if ("aeiou".Contains (userString[startPos]))
{
string newString = userString.Substring (0, startPos)
+ userString[endPos]

+ userString.Substring(startPos + 1, endPos
- startPos - 1)

+ userString[startPos]

+ userString.Substring(endPos + 1,
userString.Length - 1 - endPos);

userString = newString;
startPos++;
endPos——;

}

else

{

startPos++;

}

else

{

endPos--—;

if (!"aeiou".Contains (userString[startPos]))
{

startPos++;

}
Console.WritelLine (userString);

Alternative answer

Console.Write ("Enter a string: ");
string userString = Console.ReadLine();
int endPos = (userString.Length - 1);
int startPos = O;

string startNewWord = "";

string endNewWord = "";

while ((endPos > startPos))
{

if ("aeiou".Contains (userString[endPos]))

{

37

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

if (!"aeiou".Contains (userString[startPos]))
{
startNewWord = (startNewWord + userString[startPos]);
startPos++;
}
}
}
if ((startPos == endPos))
{
Console.WriteLine ((startNewWord + (userString[startPos] +
endNewWord))) ;
}
else

{

Alternative answer

Cons
stri
int
int
char
whil
{

if ("aeiou".Contains (userString[startPos]))

{

endNewWord = (userString[startPos] + endNewWord) ;
startNewWord = (startNewWord + userString[endPos]):;
startPos++;
endPos——;

}

else

{
startNewWord = (startNewWord + userString[startPos]);

startPos++;

}

else

{
endNewWord = userString[endPos] + endNewWord;
endPos--;

Console.WritelLine ((startNewWord + endNewWord)) ;

ole.Write ("Enter a string: ");
ng userString = Console.ReadLine () ;
endPos = userString.Length - 1;
startPos = 0;
[1] charArray = userString.ToCharArray (0,userString.Length);
e (endPos > startPos)

if (IsaVowel (charArray[startPos]))
{

while (!IsaVowel (charArray[endPos]) && endPos > startPos)

{

endPos—-—;

if (endPos > startPos)

{

char temp = charArray[startPos];

38

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

charArray[startPos] = charArrayl[endPos];
charArray[endPos] = temp;
endPos——;
}
}
startPos++;

}
userString = new string (charArray);
Console.Writeline (userString);

private static bool IsaVowel (char v)

return true;

}

return false;

11 private string GetDiscardOrPlayChoice () 4
{
string Choice;
do
{
Console.Write (" (D) iscard or (P)lay?:> ");
Choice = Console.ReadLine () .ToUpper();
if (Choice '= "D" && Choice !'= "P")
{
Console.WritelLine ("Not a wvalid choice.");
}
} while (Choice !'= "D" && Choice !'= "P");
return Choice;
}
12 public void PlayGame () 8

while (!GameOver)
{
LockSolved = false;
while (!LockSolved && !GameOver)
{
Console.WritelLine () ;
Console.WriteLine ("Current score: " + Score);
Console.Writeline ("Cards left in deck: " +
Deck.GetNumberOfCards ()) ;
Console.Writeline ("Tool cards left in deck: " +
Deck.GetNumberOfToolCards ()) ;

Console.WriteLine (CurrentLock.GetLockDetails ()):;
Console.WriteLine (Sequence.GetCardDisplay());

39

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

public int GetNumberOfToolCards ()
{
int Count = 0;
foreach (var C in cards)
{
if ("KFP".Contains (C.GetDescription() [0]))

{
Count++;

}

return Count;

13

private string GetChoice ()

Console.WriteLine () ;
Console.Write (" (D) iscard inspect, (B)lasting cap, (U)se card:>

string Choice = Console.ReadLine () .ToUpper ()
return Choice;

public void PlayGame ()
{
string MenuChoice;
bool BlastingCap = true;
if (Locks.Count > 0)
{
GameOver = false;
CurrentLock = new Lock();
SetupGame () ;

MenuChoice = GetChoice();
switch (MenuChoice)

{

case "B":

if (BlastingCap)

{
Console.Write("Challenge to blast? ");
int BlastChoice =

Convert.ToInt32 (Console.ReadLine()) - 1;
BlastingCap = false;
if (BlastChoice <

CurrentLock.GetNumberOfChallenges ())

{
if (!
CurrentLock.GetChallengeMet (BlastChoice))
{

CurrentLock.SetChallengeMet (BlastChoice,
true) ;

Console.WritelLine ("Blasting cap used.");

40

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Console.Writeline (CurrentLock.GetLockDetails ()) ;

}

}

break;

}
case "D":

{

14

private void GetCardFromDeck (int cardChoice) 12

{

Deck.GetCardDescriptionAt (0) == "Trp")

Deck.RemoveCard (Deck.GetCardNumberAt (0)) ;

a key ");

(D) iscard five cards from the deck:> ");

CurrentLock, Choice, cardChoice);

0)

Deck.GetCardDescriptionAt (0) == "Trp")

private void SetupCardCollectionFromGameFile (string lineFromFile,
CardCollection cardCol)

{

if (Deck.GetNumberOfCards () > 0)

{
if (Deck.GetCardDescriptionAt(0) == "Dif" ||

{

Card CurrentCard =

Console.WriteLine();
if (CurrentCard.GetDescription() == "Trp")
{
Console.WriteLine ("Trap!") ;
}
Console.WriteLine ("Difficulty encountered!");
Console.WriteLine (Hand.GetCardDisplay()):;
Console.Write ("To deal with this you need to either lose

Console.Write (" (enter 1-5 to specify position of key) or

string Choice = Console.ReadLine();
Console.WriteLine();

Discard.AddCard (currentCard) ;
CurrentCard.Process (Deck, Discard, Hand, Sequence,

}
}
while (Hand.GetNumberOfCards () < 5 && Deck.GetNumberOfCards () >

if (Deck.GetCardDescriptionAt (0) == "Dif" ||

{

List<string> SplitLine;
int CardNumber;
if (lineFromFile.Length > 0)
{
SplitLine = lineFromFile.Split(',"') .ToList();

41

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

TrapCard (CardNumber) ;

ToolCard(Item[0].ToString (), Item[2].ToString(), CardNumber):;

class TrapCard : DifficultyCard

{

discard, CardCollection hand, CardCollection sequence, Lock
currentLock, string choice, int cardChoice)

currentLock.GetNumberOfChallenges () - 1; Count++)

choice, cardChoice) ;

foreach (var Item in SplitLine)
{
if (Item.Length == 5)
CardNumber = Convert.ToInt32 (Item[4]);
else
CardNumber = Convert.ToInt32 (Item.Substring(4, 2));
if (Item.Substring(0, 3) == "Dif")
{
DifficultyCard CurrentCard = new

cardCol.AddCard (CurrentCard) ;
}

else

{

ToolCard CurrentCard = new

cardCol.AddCard (CurrentCard) ;

static Random rNoGen = new Random() ;
public TrapCard(int cardNo)
{
CardType = "Trp";
CardNumber = cardNo;
}

public override void Process (CardCollection deck, CardCollection

{
List<int> MetChallenges = new List<int>();
for (int Count = 0; Count <=

{
if (currentLock.GetChallengeMet (Count))
MetChallenges.Add (Count) ;
}
if (MetChallenges.Count == 0)
base.Process (deck, discard, hand, sequence, currentLock,

else

{

int rNo = rNoGen.Next (0, metChallenges.Count) ;
currentLock.SetChallengeMet (MetChallenges[rNo], false);

42

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Pascal/Delphi

Question

Marks

05 1 | var

UserString, Vowels, NewString : string;
EndPos, StartPos : integer;
begin
Vowels := 'aeiou';
write('Enter a string: ');
readln (UserString) ;
EndPos := length(UserString);
StartPos := 1;
while EndPos > StartPos do
begin
if pos(UserString[EndPos], Vowels) > 0 then
begin
if pos (UserString[StartPos], Vowels) > 0 then
begin

StartPos - 1) + UserString[StartPos] + copy(UserString,
length (UserString) - EndPos);

UserString := NewString;

inc (StartPos);

dec (EndPos) ;

end
else
inc (StartPos);
end
else
begin
dec (EndPos) ;
if pos (UserString[StartPos], Vowels) = 0 then
inc (StartPos);
end;
end;
writeln (UserString);
readln;
end.
Alternative
var

UserString, Vowels, StartNewWord, EndNewWord : string;
EndPos, StartPos : integer;

begin
Vowels := 'aeiou';
write('Enter a string: ');
readln (UserString) ;
EndPos := length (UserString);
StartPos := 1;
StartNewWord := '"';

NewString := copy(UserString, 1, StartPos - 1) +
UserString[EndPos] + copy(UserString, StartPos + 1, EndPos -

EndPos + 1,

12

43

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

EndNewWord := '';
while EndPos > StartPos do
begin
if pos(UserString[EndPos], Vowels) > 0 then
begin
if pos (UserString[StartPos], Vowels) > 0 then
begin
EndNewWord := UserString[StartPos] + EndNewWord;
StartNewWord := StartNewWord + UserString[EndPos];

inc (StartPos);
dec (EndPos) ;

end

else

begin
StartNewWord
inc (StartPos);

StartNewWord + UserString[StartPos];

end;
end
else
begin
EndNewWord := UserString[EndPos] + EndNewWord;
dec (EndPos) ;
if pos (UserString[StartPos], Vowels) = 0 then
begin
StartNewWord := StartNewWord + UserString[StartPos];
inc (StartPos);
end;
end;
end;

if StartPos = EndPos then

writeln (StartNewWord + UserString[StartPos] + EndNewWord)
else

writeln (StartNewWord + EndNewWord) ;

readln;
end.
11 function Breakthrough.GetDiscardOrPlayChoice() : string;
var
Choice : string;
begin
repeat
write (' (D)iscard or (P)lay?:> '");
readln (Choice);
Choice := UpperCase (Choice);
if (Choice <> 'D') and (Choice <> 'P') then
writeln('Not a valid choice.');
until (Choice = 'D') or (Choice = 'P');
GetDiscardOrPlayChoice := Choice;
end;
12 while (not (LockSolved)) and (not (GameOver)) do

begin

44

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

writeln;
writeln ('Current score: ' + inttostr(Score));
writeln('Cards left in deck: ' +
inttostr (Deck.GetNumberOfCards ())) ;
writeln('Tool cards left in deck: ' +
inttostr (Deck.GetNumberOfToolCards())) ;
writeln (CurrentLock.GetLockDetails ()):;
writeln (Sequence.GetCardDisplay());

writeln (Hand.GetCardDisplay()):
MenuChoice := GetChoice () ;

function CardCollection.GetNumberOfToolCards () : integer;
var
Count, index : integer;
C : Card;
Codes : string;
begin
Count := 0;
Codes := 'KFP';
for index := 0 to High(Cards) do
begin
C := Cards[index];
if pos(C.GetDescription() [1], Codes) > 0 then
inc (Count) ;
end;

GetNumberOfToolCards := Count;
end;

13

function Breakthrough.GetChoice () : string;
var
Choice : string;
begin
writeln;
write (' (D)iscard inspect, (B)lasting cap, (U)se card:> ');
readln (Choice);

Choice := UpperCase (Choice);
GetChoice := Choice;
end;

procedure Breakthrough.PlayGame () ;
var
MenuChoice, DiscardOrPlay : string;

CardChoice, BlastChoice : integer;
BlastingCap : boolean;
begin

if length(Locks) > 0 then

begin
GameOver := False;
CurrentLock := Lock.New()
BlastingCap := True;
SetupGame () ;

while not (GameOver) do

45

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

begin
LockSolved := False;
while (not (LockSolved)) and (not (GameOver)) do
begin
writeln;
writeln ('Current score: ' + inttostr (Score));

writeln (CurrentLock.GetLockDetails ()):;
writeln (Sequence.GetCardDisplay());
writeln (Hand.GetCardDisplay()):;
MenuChoice := GetChoice ()
case MenuChoice[l] of
'B' :
begin
if BlastingCap then
begin
write('Challenge to blast? ');
readln (MenuChoice) ;
BlastChoice strtoint (MenuChoice) - 1;
BlastingCap := False;
if BlastChoice < CurrentLock.GetNumberOfChallenges ()

then
begin
if not(CurrentLock.GetChallengeMet (BlastChoice))
then
begin
CurrentLock.SetChallengeMet (BlastChoice, True) ;
writeln('Blasting cap used.');
writeln (CurrentLock.GetLockDetails()) ;
end;
end;
end;

end;
'D' : writeln(Discard.GetCardDisplay()):;

14

TrapCard = class(DifficultyCard)
public
constructor New(CardNo : integer); overload;
procedure Process (Deck : CardCollection; Discard
CardCollection; Hand : CardCollection; Sequence : CardCollection;
CurrentLock : Lock; Choice : string; CardChoice : integer);
override;
end;

TIntegerArray = array of integer;

constructor TrapCard.New(CardNo: Integer) ;

begin
CardType := 'Trp';
CardNumber := CardNo;
end;

12

46

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

procedure TrapCard.Process (Deck: CardCollection; Discard:
CardCollection; Hand: CardCollection; Sequence: CardCollection;
CurrentLock: Lock; Choice: string; CardChoice: Integer);
var
MetChallenges : TIntegerArray;
RNo, Count : integer;
begin
for Count := 0 to CurrentLock.GetNumberOfChallenges() - 1 do
if CurrentLock.GetChallengeMet (Count) then
begin
setLength (MetChallenges, length(MetChallenges) + 1);
MetChallenges[High (MetChallenges)] := Count;
end;
if length(MetChallenges) = 0 then
inherited
else
begin
RNo := random(length (MetChallenges)) ;
CurrentLock.SetChallengeMet (MetChallenges[RNo], False);

end;
end;
procedure Breakthrough.GetCardFromDeck (CardChoice : integer);
var
CurrentCard : Card;
Choice : string;
begin
if Deck.GetNumberOfCards () > 0 then
begin
if (Deck.GetCardDescriptionAt (0) = 'Dif') or
(Deck.GetCardDescriptionAt(0) = 'Trp') then
begin
CurrentCard := Deck.RemoveCard (Deck.GetCardNumberAt (0)) ;
writeln;
if CurrentCard.GetDescription() = 'Trp' then

writeln ('Trap!')
while (Hand.GetNumberOfCards () < 5) and (Deck.GetNumberOfCards ()
0) do

begin
if (Deck.GetCardDescriptionAt (0) = 'Dif') or
(Deck.GetCardDescriptionAt(0) = 'Trp') then

procedure Breakthrough.SetupCardCollectionFromGameFile (LineFromFile
string; CardCol : CardCollection);
var
SplitLine : TStringArray;
CardNumber, index : integer;
Item : String;
CurrentCard : Card;
begin
if length(LineFromFile) > 0 then

>

47

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

if copy(Item, 1, 3) = 'Dif' then

begin
CurrentCard := TrapCard.New (CardNumber) ;
CardCol.AddCard (CurrentCard) ;

end

else

begin
CurrentCard := ToolCard.New(Item[1l], Item[3],
CardCol.AddCard (CurrentCard) ;

end;

end;
end;

end;

CardNumber) ;

48

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

Java
Question Marks
05 1 | Console.writeLine ("Enter a string: "); 12
String input = Console.readLine();
int startPos = 0;
int endPos = input.length()-1;
String startNewWord = "", endNewWord = "";
while (endPos>startPos) {
if (input.charAt (endPos) == 'a' || input.charAt (endPos)
| | input.charAt (endPos) == 'i'
| | input.charAt (endPos) == 'o' || input.charAt (endPos)
== 'u') {
if (input.charAt(startPos) == 'a' || input.charAt (startPos)
== 'e' || input.charAt (startPos) == 'i'
| | input.charAt (startPos) == 'o' ||
input.charAt (startPos) == 'u') {
endNewWord = input.charAt (startPos) + endNewWord;
startNewWord += input.charAt (endPos);
startPos++;
endPos--;
}
else {
startNewWord += input.charAt (startPos);
startPos++;
}
}
else {
endNewWord = input.charAt (endPos) + endNewWord;
endPos——;
if (input.charAt (startPos) == 'a' || input.charAt (startPos)
== 'e' || input.charAt (startPos) == 'i'
| | input.charAt (startPos) == 'o' ||
input.charAt (startPos) == 'u') {
startNewWord += input.charAt (startPos);
startPos++;
}
}
}
if (startPos == endPos) {
Console.writelLine (startNewWord + input.charAt (startPos)
endNewWord) ;
}
else {
Console.writeline (startNewWord + endNewWord) ;
}
11 1 | private String getdiscardOrPlayChoice () { 4

String choice;

do {
Console.write (" (D) iscard or (P)lay?:> ");
choice = Console.readLine () .toUpperCase () ;

49

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

if ('choice.equals("D") && !'choice.equals("P")) ({
Console.writeline ("Error only choices D or P are
permitted.");
}
} while ('choice.equals("D") && !'choice.equals("P"));
return choice;

12 public void playGame () {
while (! lockSolved && ! gameOver) {
Console.writelLine () ;
Console.writeLine ("Current score: " + score);
Console.writelLine ("Cards left in deck: " +
deck.getNumberOfCards ()) ;
Console.writelLine ("Tools left in deck: " +
deck.getNumberOfToolCards ()) ;
Console.writelLine (currentLock.getLockDetails());
Console.writeline (sequence.getCardDisplay());
Console.writelLine (hand.getCardDisplay());
menuChoice = getChoice();
public int getNumberOfToolCards ()
{
int toolCardNo = 0;
for (Card card : cards) {
if ("PFK".contains (card.getDescription() .charAt(0)+"")) {
toolCardNo++;
}
}
return toolCardNo;
}
13 private String getChoice () {

Console.writeLine () ;

Console.write (" (D)iscard inspect, (U)se card, (B)lasting Cap:>

String choice = Console.readLine () .toUpperCase();
return choice;

public void playGame () {

Console.writelLine (hand.getCardDisplay()):;

menuChoice = getChoice();
switch (menuChoice) {
case "B":

if (!'blastingCapUsed) ({
blastingCapUsed = true;
Console.write ("Enter the position of the challenge:>

")

50

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

int challengePos =
Integer.parselInt (Console.readLine()) - 1;
if (challengePos <
currentLock.getNumberOfChallenges () &&
'currentLock.getChallengeMet (challengePos)) {
currentLock.setChallengeMet (challengePos, true)
Console.writeline ("Blasting cap used
successfully.") ;
Console.writeline (currentLock.getLockDetails()) ;

}

break;

case "D":
Console.writeline (discard.getCardDisplay())
break;

14

private void getCardFromDeck (int cardChoice) {
if (deck.getNumberOfCards () > 0) {
if (deck.getCardDescriptionAt (0) .equals ("Dif") ||
deck.getCardDescriptionAt (0) .equals ("Trp")) {
if (deck.getCardDescriptionAt(0) .equals("Trp")) {
Console.writeLine ("Trap!") ;
}
Card currentCard =
deck.removeCard (deck.getCardNumberAt (0)) ;
Console.writeLine();
Console.writeLine ("Difficulty encountered!");

while (hand.getNumberOfCards () < 5 && deck.getNumberOfCards() >
0) {
if
(deck.getCardDescriptionAt (0) .equals ("Dif") | |deck.getCardDescription
At (0) .equals ("Trp")) {
moveCard (deck, discard, deck.getCardNumberAt (0));
Console.writeLine ("A difficulty card was discarded from
the deck when refilling the hand.");
} else {
moveCard (deck, hand, deck.getCardNumberAt (0));

}
if (deck.getNumberOfCards () == 0 && hand.getNumberOfCards () < 5)

gameOver = true;

private void setupCardCollectionFromGameFile (String lineFromFile,
CardCollection cardCol) {

List<String> splitLine;

int cardNumber;

if (lineFromFile.length() > 0) {

12

51

MARK SCHEME — A-LEVEL COMPUTER SCIENCE - 7517/1 - JUNE 2022

if (item.substring (0, 3).equals("Dif")) {
DifficultyCard currentCard = new
TrapCard (cardNumber) ;

cardCol.addCard (currentCard) ;

} else {
ToolCard currentCard = new ToolCard (rNoGen,
item.charAt (0)+"", item.charAt (2)+"", cardNumber);

cardCol.addCard (currentCard) ;

class TrapCard extends DifficultyCard({

public TrapCard(int cardNo) {
cardType = "Trp";
cardNumber = cardNo;

@Override
public void process(CardCollection deck, CardCollection discard,
CardCollection hand, CardCollection sequence, Lock currentLock,
String choice, int cardChoice) {
List<Integer> challengesMet = new ArrayList<>();
for (int i = 0; i < currentLock.getNumberOfChallenges() ;
i++) {
if (currentlLock.getChallengeMet(i)) {
challengesMet.add (i) ;

}
if (challengesMet.isEmpty()) {

super .process (deck, discard, hand, sequence,
currentLock, choice, cardChoice) ;

}

else {
int rNo = rNoGen.nextInt(challengesMet.size());
currentLock.setChallengeMet (rNo, false) ;

}

52

