

A-level

COMPUTER SCIENCE

7517/1

Paper 1

Mark scheme

June 2020

Version: 1.0 Final

206A7517/1/MS

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

2

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant

questions, by a panel of subject teachers. This mark scheme includes any amendments made at the

standardisation events which all associates participate in and is the scheme which was used by them in

this examination. The standardisation process ensures that the mark scheme covers the students’

responses to questions and that every associate understands and applies it in the same correct way.

As preparation for standardisation each associate analyses a number of students’ scripts. Alternative

answers not already covered by the mark scheme are discussed and legislated for. If, after the

standardisation process, associates encounter unusual answers which have not been raised they are

required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and

expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark

schemes on the basis of one year’s document should be avoided; whilst the guiding principles of

assessment remain constant, details will change, depending on the content of a particular examination

paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own
internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third
party even for internal use within the centre.

Copyright © 2020 AQA and its licensors. All rights reserved.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

3

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The

descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as

instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the

descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in

the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it

meets this level, and so on, until you have a match between the level descriptor and the answer. With

practice and familiarity you will find that for better answers you will be able to quickly skip through the

lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in

small and specific parts of the answer where the student has not performed quite as well as the rest. If

the answer covers different aspects of different levels of the mark scheme you should use a best fit

approach for defining the level and then use the variability of the response to help decide the mark within

the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be

placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate

marks can help with this. The exemplar materials used during standardisation will help. There will be an

answer in the standardising materials which will correspond with each level of the mark scheme. This

answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer

with the example to determine if it is the same standard, better or worse than the example. You can then

use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and

assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be

exhaustive and you must credit other valid points. Students do not have to cover all of the points

mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

4

A-level Computer Science

Paper 1 (7517/1) – applicable to all programming languages A, B, C, D and E

June 2020

The following annotation is used in the mark scheme:

; - means a single mark
// - means an alternative response
/ - means an alternative word or sub-phrase
A. - means an acceptable creditworthy answer
R. - means reject answer as not creditworthy
NE. - means not enough
I. - means ignore
DPT. - means "Don't penalise twice". In some questions a specific error made by a candidate, if

repeated, could result in the loss of more than one mark. The DPT label indicates that this
mistake should only result in a candidate losing one mark, on the first occasion that the error is
made. Provided that the answer remains understandable, subsequent marks should be
awarded as if the error was not being repeated.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

5

Examiners are required to assign each of the candidate’s responses to the most appropriate level
according to its overall quality, and then allocate a single mark within the level. When deciding upon a
mark in a level examiners should bear in mind the relative weightings of the assessment objectives

eg

In question 05.1, the marks available for the AO3 elements are as follows:

AO3 (design) 4 marks
AO3 (programming) 8 marks

Where a candidate’s answer only reflects one element of the AO, the maximum mark they can receive

will be restricted accordingly.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

6

Question Marks

01 1 Mark is for AO2 (apply)

4
//

√42+02;

1

01 2 All marks AO2 (apply)

2 marks: 16

If final answer is incorrect then award a maximum of 1 mark for working:

1 mark: for either multiplying 4 by 4 or multiplying 3 by 0
1 mark: for adding together the sum of two (incorrect) products

2

01 3 All marks AO2 (analyse)

The angle will still be the same; A. the direction will not change

The magnitude will be doubled // the magnitude will now be 10;

2

01 4 All marks AO2 (analyse)

The angle will be 180 – c // the angle will be 360 – 180 – c // the angle will be
143.13;

A. the direction of a will be the opposite of its current direction

The magnitude will still be the same;

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

7

Question Marks

02 1 All marks AO1 (understanding)

Statement
True or

False?

All regular languages can be represented using a finite state

machine without outputs.
True

The set of strings defined by a regular language is always

finite in size.
False

There are some languages which can be represented in

Backus-Naur Form (BNF) that are not regular languages.
True

Mark as follows:

1 mark: two rows correct
1 mark: all three rows correct

2

02 2 Mark is for AO2 (analyse)

<sentence> ::= <np><v> | <v><np>

//
<sentence> ::= <v><np> | <np><v>

R. any answers that consist of more than one rule

1

02 3 Mark is for AO2 (apply)

String Valid sentence (Y/N)?

cuddle the cat Y

drank a human Y

the cat slept Y

cat or dog N

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

8

Question Marks

02 4 Mark is for AO2 (apply)

Modify the existing rule for np:

<np> ::= <d><n> | <n>

//
Modify an existing rule for sentence:

<sentence> ::= <np><v> | <n><v>

//
Modify an existing rule for sentence:

<sentence> ::= <v><np> | <n><v>

//
Modify an existing rule for sentence:

<sentence> ::= <np><v> | <v><np> | <n><v>

//
Create a new rule:
<sentence> ::= <n><v>

//
Create a new rule:
<np> ::= <n>

1

02 5 All marks for AO2 (apply)

Mark as follows:

2 marks:
8x4x3x8x4
//
2x4x4x3x2x4x4
//
3072

If final answer is incorrect then award a maximum of 1 mark for working:

1 mark: for calculating that there are 8 noun phrases // for calculating that there
are 4x2 noun phrases

1 mark: for multiplying an incorrectly calculated number of noun phrases by the
number of noun phrases, by 3, by 4 and by 4 again

2

02 6 Mark is for AO2 (apply)

Infinitely more;

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

9

Question Marks

03 1 Mark is for AO2 (apply)

4!
//
4x3x2x1
//
4x3x2
//
24;

1

03 2 Mark is for AO2 (apply)

n! // factorial of n;

A. 1 * 2 *… * n-1 * n (or similar)

1

03 3 Mark is for AO2 (analyse)

The string could contain more than one occurrence of a character;

Each athlete is unique, each character is not (guaranteed to be) unique;

There are n characters in the string but not n distinct characters;

Some of the anagrams could be duplicates;

Max 1

1

03 4 All marks for AO1 (knowledge)

A problem that can be solved;

but not in a reasonable amount of time as the problem size increases // but has

an exponential (or worse) time complexity // but there is no polynomial (or less)

time solution;

2

03 5 Mark is for AO1 (understanding)

One;

1

03 6 One mark is for AO1 (knowledge) and one mark is for AO1 (understanding)

AO1 knowledge
O(n);

Max 1 for AO1 understanding
As the size of the list increases the time taken increases at the same rate;
There is a loop that repeats n times;

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

10

Question Marks

03 7 One mark is for AO1 (knowledge) and one mark is for AO1 (understanding)

AO1 knowledge
O(log n);

Max 1 for AO1 understanding
Each comparison halves the size of the list that has to be searched through;
The time taken increases as the size of the list increases but by smaller and
smaller amounts;
If the size of the list doubles then the number of comparisons needed only
increases by 1;

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

11

Question Marks

04 1 All marks for AO1 (understanding)

Max 2 for advantages of dynamic data structures
No wasted memory;

Can grow as more data is added to the data structure // no limit on number of
items that can be added (except due to hardware limitations);

Resources only allocated as they are needed (with static data structures they are
allocated at creation even if not needed until later);

Max 2 for disadvantages of dynamic data structures
Additional memory needed for pointers;

Can result in memory leak (if memory that is no longer needed is not returned to
the heap);

Can take longer to access an item directly (for data structures that allow this);
A. can take longer to add a new item to the data structure (as memory needs to
be allocated)

4

04 2 All marks for AO1 (understanding)

Check that the queue is not already full;

(if it isn’t) then add 1 to the value of the rear pointer;

then add the new item to the position indicated by the rear pointer;

Alternative answer
Check that the queue is not already full;

(if it isn’t) then add the new item to the position indicated by the rear pointer;

then add 1 to the value of the rear pointer;

Max 2 if any errors

Max 1 if circular queue has been described

3

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

12

04 3 All marks for AO1 (understanding)

Starting with the item at the rear of the queue move each item back one place in the array;

Until you (reach the start of the queue or) find an item with the same or higher priority than
the item to add;
NE. same priority
NE. higher priority

Add the new item in the position before that item;

A. answers which have the front of the queue as the last item in the array, start at the front
and move each item forward one until the correct insertion point is found.

A. answers that start from the front of the queue until position to insert item is found and

then start at the back and move each item back one until position to insert item is found.

3

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

13

Question Marks

05 1 4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark Scheme

Level Description Mark
Range

4 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution that meets most of the
requirements. All of the appropriate design decisions
have been taken. To award 12 marks, all of the
requirements must be met.

10–12

3 There is evidence that a line of reasoning has been
followed to produce a logically structured program. The
program displays relevant prompts, inputs the required
numbers, at least one iterative structure and one
selection structure and suitable data structure(s) to store
the numbers entered and the frequencies. An attempt
has been made to determine the modal frequency,
although this may not work correctly under all
circumstances. The solution demonstrates good design
work as most of the correct design decisions have been
made.

7–9

2 A program has been written and some appropriate,
syntactically correct programming language statements
have been written. There is evidence that a line of
reasoning has been partially followed as although the
program may not have the required functionality, it can
be seen that the response contains some of the
statements that would be needed in a working solution.
There is evidence of some appropriate design work as
the response recognises at least one appropriate
technique that could be used by a working solution,
regardless of whether this has been implemented
correctly.

4–6

1 A program has been written and a few appropriate
programming language statements have been written but
there is no evidence that a line of reasoning has been
followed to arrive at a working solution. The statements
written may or may not be syntactically correct. It is
unlikely that any of the key design elements of the task
have been recognised.

1–3

12

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

14

Guidance

Evidence of AO3 design – 4 points:

Evidence of design to look for in responses:

1. Identifying that data structure(s) are needed to store ten frequencies
2. Identifying that a loop is needed that repeats a number of times determined by

the first number entered by the user
3. Identifying that a Boolean (or equivalent) variable is needed to store if the

data was multimodal
4. Selection structure that either outputs a calculated number (I. incorrectly

calculated) or a message saying "Data was multimodal" (A. any

suitable message)

Note that AO3 (design) points are for selecting appropriate techniques to use to
solve the problem, so should be credited whether the syntax of programming
language statements is correct or not and regardless of whether the solution
works.

Evidence for AO3 programming – 8 points:

Evidence of programming to look for in response:

5. Suitable prompts asking user to enter the number of digits followed by user

inputs being assigned to appropriate variable R. if inside or after iterative
structure

6. Correct number of numeric digits obtained from the user
7. Adds one to correct frequency count R. if only works for one digit
8. Selection structure, inside iterative structure, that correctly compares

calculated frequency (I. incorrect frequency) of a digit with the highest
frequency found so far

9. Boolean (or equivalent) variable that is used to indicate if data is multimodal is
set to true under correct circumstances

10. Boolean (or equivalent) variable that is used to indicate if data is multimodal is
set to false when new higher frequency is found

11. Program works correctly if the data has more than one modal value A. any
sensible message

12. Program displays the correct frequency of the modal value under all
circumstances and does not say data is multimodal when it is not I. frequency
being displayed when data is multimodal

Max 11 if code contains any errors

05 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 05.1, including prompts on screen capture matching those
in code.
Code for 05.1 must be sensible.

Screen captures showing:

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

15

• the number 6 being entered followed by the numbers 0, 1, 2, 1, 2 and 1 (I.
order of these six numbers) and then a message displayed saying 3

• the number 5 being entered followed by the numbers 0, 1, 2, 2 and 1 (I. order
of these five numbers) and then a message displayed saying that the data is
multimodal.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

16

Question Marks

06 1 Mark is for AO2 (analyse)

That the company name being searched for does not exist (in the simulation);

A. user misspelt the company name

1

06 2 Marks are for AO2 (analyse)

There is no need for the variable Index // no need to assign the value of -1 to

Index;

If the loop terminates then can just return (the constant value) -1 // if the

company name is not found then can just return (the constant value) -1;

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

17

Question Marks

07 1 Mark is for AO2 (analyse)

GetDetails;

R. if spelt incorrectly
R. if any additional code
I. case and spacing

1

07 2 Mark is for AO2 (analyse)

Details;

OldCapacity;

R. if spelt incorrectly
R. if any additional code
I. case and spacing

Max 1 mark

1

07 3 Mark is for AO1 (understanding)

Private attributes can only be accessed by the class/object they belong to
whereas protected attributes can also be accessed by any classes that inherit
from the class they belong to;

A. file instead of class/object (Java only)
NE. private attribute can only be accessed by the class/object they belong to
whereas protected attributes can be accessed by others classes/objects

1

07 4 Mark is for AO2 (analyse)

The calculation of the daily costs will be inconsistent as it will be different in the
AlterCapacity method;

A. it won’t have been updated in other locations which use that constant

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

18

Question Marks

08 1 Mark is for AO2 (analyse)

LargeSettlement;

R. if spelt incorrectly
R. if any additional code
I. case and spacing

1

08 2 Mark is for AO2 (analyse)

Household;

R. if spelt incorrectly
R. if any additional code
I. case and spacing

1

08 3 Mark is for AO2 (analyse)

Company;

R. if spelt incorrectly
R. if any additional code
I. case and spacing

1

08 4 Mark is for AO2 (analyse)

Aggregation;

1

Question Marks

09 All marks are for AO2 (analyse)

It stores the cumulative reputation for the companies in an array/list;

It then generates a random number which is less than the total reputation;
A. generates a random number based on the total reputation of the companies

Finds the first cumulative reputation that the number is less than;

The position of this cumulative reputation in the list indicates the company that the
household will use;

4

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

19

Question Marks

10 1 All marks for AO3 (programming)

1. Indefinite iterative structure contains code that gets the name from the user;
2. One correct condition;
3. Both correct conditions and correct logic for the iterative structure;
4. Displays error message if no name is entered // displays error message if a name

that has already been used is entered;
5. Displays error message under all correct circumstances and only under correct

circumstances;

Max 4 if code contains errors

5

10 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 10.1, including prompts on screen capture matching those in
code.
Code for 10.1 must be sensible.

Screen captures showing error message(s) being shown for the two invalid names
and then showing the message asking for the starting balance when a valid name is
entered;

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

20

Question Marks

11 1 All marks for AO3 (programming)

1. Creating a new class called AffluentHousehold; R. other names for class I.

case and minor typos
2. New class inherits from Household;

3. Constructor created that overrides base class constructor with call made to base
class constructor; R. if incorrect parameters

4. Sets the value of ChanceEatOutPerDay to 1; R. if before call to base class

constructor R. If not after attempt at call to base class constructor

The following all relate to the AddHousehold method:

5. Selection structure with correct condition;
6. Creates an AffluentHousehold object; R. if it also creates a household

7. Creates an AffluentHousehold under the correct circumstances and a

Household under the correct circumstances; R. if new household not added to

Households

Max 6 if code contains errors

7

11 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 11.1, including prompts on screen capture matching those in
code.
Code for 11.1 must be sensible.

Screen capture(s) showing that households with an X value less than 100 have an
eat out percentage of 1;

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

21

Question Marks

12 1 All marks for AO3 (programming)

Marks for changes to the Simulation class:

1. Two extra options displayed on the modify company menu using appropriate

messages;

2. Selection structures for the new menu options with appropriate condition(s);

3. Gets the user to enter the interest rate when getting a loan and the amount to

pay back when paying back under the appropriate circumstances; A. done in
appropriate places in the Company class;

4. Calls to appropriate methods in Company class in the selection structures;

Marks for changes to the Company class:

5. Attributes of appropriate data types created for LoanBalance and

InterestRate;

6. Correct calculation of daily interest payment and new balance in

ProcessDayEnd; R. if the balance is changed before previous balance

concatenated with Details

7. Selection structure to check if LoanBalance is 0 when user chooses to get a

loan; A. check for less than or equal to 0

8. Balance, LoanBalance and InterestRate set to correct values in the

selection structure;

9. LoanBalance and Balance changed by the correct amount when user

chooses to pay back part of the loan;

10. All attributes in Company are only accessed and modified by methods in

Company; R. if no attempt to access or modify the attributes used when getting

or paying back a loan.

Max 9 marks if code contains errors

10

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

22

Question Marks

12 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 12.1, including prompts on screen capture matching those in
code.
Code for 12.1 must be sensible.

Screen capture(s) showing that the balance for AQA Burgers is approximately
92 000; Note for examiners: due to random numbers in simulation exact balance
can vary.

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

23

Question Marks

13 1 All marks for AO3 (programming)

1. Created new method called GetOrderedListOfOutlets; R. other names

for method I. case and minor typos
2. Method returns a list/array;
3. Outlet 0 is added to the route first;
4. Iterative structure that repeats until all outlets have been added to the route;
5. Has variable that is used to store shortest distance found between two nodes so

far and a variable to store which outlet results in the shortest distance;
6. Iterative structure that looks at each outlet for which distance from previous

outlet in route needs to be calculated; A. looks at all outlet except previous
outlet

7. No outlet can appear more than once in route created; R. if adds or two or fewer
outlets to the list only R. if no attempt to check if outlet has already been added
or equivalent

8. Route created contains all the company’s outlets;
9. Shortest distance between two nodes variable set to suitable starting value and

reset after each outlet (except last one) is added to route;
10. GetOrderedListOfOutlets implements the algorithm described in Figure

6 in the question;
11. Modified CalculateDeliveryCost so that it calls

GetOrderedListOfOutlets instead of GetListOfOutlets; A.

alternative identifier used as long as match that used for mark point 1

Max 10 if code contains errors or if other parts of the subroutine no longer work
correctly

11

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

24

Question Marks

13 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 13.1, including prompts on screen capture matching those in
code.
Code for 13.1 must be sensible.

Screen capture(s) showing that the delivery cost for AQA Burgers is 22.10446;

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

25

VB.Net

Question Marks

05 1 Dim Current As Integer

Dim Frequencies(9) As Integer

Dim ModeFrequency As Integer = 0

Dim Multimodal As Boolean = False

Dim NoOfDigits As Integer

Console.Write("Enter number of digits: ")

NoOfDigits = Console.ReadLine

For count = 1 To NoOfDigits

 Console.Write("Enter a numeric digit: ")

 Current = Console.ReadLine

 Frequencies(Current) += 1

Next

For Count = 0 To 9

 If Frequencies(Count) > ModeFrequency Then

 ModeFrequency = Frequencies(Count)

 Multimodal = False

 ElseIf Frequencies(Count) = ModeFrequency Then

 Multimodal = True

 End If

Next

If Multimodal Then

 Console.WriteLine("Data was multimodal")

Else

 Console.WriteLine("The modal digit appeared " & ModeFrequency & "

times")

End If

12

10 1 Public Sub AddCompany()

 Dim Balance, X, Y As Integer

 Dim CompanyName, TypeOfCompany As String

 Do

 Console.Write("Enter a name for the company: ")

 CompanyName = Console.ReadLine

 If CompanyName = "" Then

 Console.WriteLine("You must enter a name.")

 End If

 If GetIndexOfCompany(CompanyName) <> -1 Then

 Console.WriteLine("That name is already being used.")

 End If

 Loop While CompanyName = "" Or GetIndexOfCompany(CompanyName) <> -

1

 Console.Write("Enter the starting balance for the company: ")

Alternative answer

Public Sub AddCompany()

 Dim Balance, X, Y As Integer

 Dim CompanyName, TypeOfCompany As String

 Console.Write("Enter a name for the company: ")

 CompanyName = Console.ReadLine

 While CompanyName = "" Or GetIndexOfCompany(CompanyName) <> -1

 If CompanyName = "" Then

 Console.WriteLine("You have to enter a company name")

 Else

5

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

26

 Console.WriteLine("Company name already exists, it has to be

unique")

 End If

 Console.Write("Enter a name for the company: ")

 CompanyName = Console.ReadLine

 End While

 Console.Write("Enter the starting balance for the company: ")

11 1 Public Sub AddHousehold()

 Dim X, Y As Integer

 GetRandomLocation(X, Y)

 If X < 100 Then

 Dim Temp As New AffluentHousehold(X, Y)

 Households.Add(Temp)

 Else

 Dim Temp As New Household(X, Y)

 Households.Add(Temp)

 End If

End Sub

Class AffluentHousehold

 Inherits Household

 Public Sub New(ByVal X As Integer, ByVal Y As Integer)

 MyBase.New(X, Y)

 ChanceEatOutPerDay = 1

 End Sub

End Class

7

12 1 From the simulation class

Public Sub ModifyCompany(ByVal Index As Integer)

 Dim Choice As String

 Dim OutletIndex, X, Y As Integer

 Dim CloseCompany As Boolean

 Console.WriteLine(Environment.NewLine &

"*********************************")

 Console.WriteLine("******* MODIFY COMPANY *******")

 Console.WriteLine("*********************************")

 Console.WriteLine("1. Open new outlet")

 Console.WriteLine("2. Close outlet")

 Console.WriteLine("3. Expand outlet")

 Console.WriteLine("4. Get Loan")

 Console.WriteLine("5. Pay back loan")

 Console.Write(Environment.NewLine & "Enter your choice: ")

 Choice = Console.ReadLine

 Console.WriteLine()

 If Choice = "2" Or Choice = "3" Then

...

 ElseIf Choice = "1" Then

...

 ElseIf Choice = "4" Then

 Console.Write("Enter the interest rate for the loan: ")

 Dim Rate As Single = Console.ReadLine

 Companies(Index).GetLoan(Rate)

 ElseIf Choice = "5" Then

 Console.Write("Enter the amount to pay back: ")

 Dim PayBackAmount As Single = Console.ReadLine

 Companies(Index).PayBackLoan(PayBackAmount)

10

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

27

 End If

 Console.WriteLine()

End Sub

From the Company class

Class Company

 Protected Name, Category As String

 Protected Balance, ReputationScore, AvgCostPerMeal,

AvgPricePerMeal, DailyCosts, FamilyOutletCost, FastFoodOutletCost,

NamedChefOutletCost, FuelCostPerUnit, BaseCostOfDelivery As Single

 Protected Outlets As New ArrayList

 Protected FamilyFoodOutletCapacity, FastFoodOutletCapacity,

NamedChefOutletCapacity As Integer

 Protected InterestRate As Single

 Protected LoanBalance As Single

...

Public Function ProcessDayEnd() As String

...

 Next

 Details &= "Previous balance for company: " & Balance.ToString &

Environment.NewLine

 Balance += ProfitLossFromOutlets - DailyCosts - DeliveryCosts -

(LoanBalance * InterestRate)

 Details &= "New balance for company: " & Balance.ToString

 Return Details

End Function

Public Sub GetLoan(ByVal Rate As Single)

 If LoanBalance = 0 Then

 Balance += 10000

 LoanBalance = 10000

 InterestRate = Rate

 End If

End Sub

Public Sub PayBackLoan(ByVal Amount As Single)

 LoanBalance -= Amount

 Balance -= Amount

End Sub

Alternative answer for taking a loan

In ModifyCompany method in Simulation class

...
ElseIf Choice = "4" Then

 If Companies(Index).GetLoanBalance() <= 0 Then

 Console.Write("Enter Interest Rate: ")

 InterestRate = Console.ReadLine()

 Companies(Index).TakeOutLoan(InterestRate)

 End If

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

28

Methods in Company Class

Public Function GetLoanBalance() As Single

 Return LoanBalance

End Function

Public Sub TakeOutLoan(ByVal InterestRate As Single)

 Me.InterestRate = InterestRate

 LoanBalance = 10000

 Balance += 10000

End Sub

13 1 Private Function GetOrderedListOfOutlets() As ArrayList

 Dim OrderedList As New ArrayList

 Dim NearestOutlet As Integer

 OrderedList.Add(0)

 While OrderedList.Count < Outlets.Count

 Dim ShortestDistanceSoFar As Single = 1000000

 For Count = 1 To Outlets.Count - 1

 If Not OrderedList.Contains(Count) Then

 Dim Temp As Integer =

GetDistanceBetweenTwoOutlets(OrderedList(OrderedList.Count – 1),

Count)

 If Temp < ShortestDistanceSoFar Then

 NearestOutlet = Count

 ShortestDistanceSoFar = Temp

 End If

 End If

 Next

 OrderedList.Add(NearestOutlet)

 End While

 Return OrderedList

End Function

Public Function CalculateDeliveryCost() As Single

 Dim ListOfOutlets As ArrayList = GetOrderedListOfOutlets()

 Dim TotalDistance As Single = 0

 Dim TotalCost As Single = 0

 For Count = 0 To ListOfOutlets.Count - 2

 TotalDistance +=

GetDistanceBetweenTwoOutlets(ListOfOutlets(Count),

ListOfOutlets(Count + 1))

 Next

 TotalCost += TotalDistance * FuelCostPerUnit

 Return TotalCost

End Function

11

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

29

Python 2

Question Marks

05 1 ModeFrequency = 0

Multimodal = False

Frequencies = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

NoOfDigits = int(input("Enter number of digits: "))

for count in range (1, NoOfDigits + 1):

 Current = int(input("Enter a numeric digit: "))

 Frequencies[Current] += 1

for Count in range (0, 10):

 if Frequencies[Count] > ModeFrequency:

 ModeFrequency = Frequencies[Count]

 Multimodal = False

 elif Frequencies[Count] == ModeFrequency:

 Multimodal = True

if Multimodal:

 print("Data was multimodal")

else:

 print("The modal digit appeared " + str(ModeFrequency) + " times")

12

10 1 def AddCompany(self):

 CompanyName = input("Enter a name for the company: ")

 while CompanyName == "" or self.GetIndexOfCompany(CompanyName) !=

-1:

 if CompanyName == "":

 print("You have to enter a company name")

 else:

 print("Company name already exists, it has to be unique")

 CompanyName = input("Enter a name for the company: ")

 Balance = int(input("Enter the starting balance for the company:

"))

 TypeOfCompany = ""

 while not(TypeOfCompany == "1" or TypeOfCompany == "2" or

TypeOfCompany == "3"):

 TypeOfCompany = input("Enter 1 for a fast food company, 2 for a

family company or 3 for a named chef company: ")

 if TypeOfCompany == "1":

 TypeOfCompany = "fast food"

 elif TypeOfCompany == "2":

 TypeOfCompany = "family"

 else:

 TypeOfCompany = "named chef"

 X, Y = self._SimulationSettlement.GetRandomLocation()

 NewCompany = Company(CompanyName, TypeOfCompany, Balance, X, Y,

self._FuelCostPerUnit, self._BaseCostforDelivery)

 self._Companies.append(NewCompany)

5

11 1 def AddHousehold(self):

 X, Y = self.GetRandomLocation()

 if X < 100:

 Temp = AffluentHousehold(X, Y)

 self._Households.append(Temp)

 else:

 Temp = Household(X, Y)

 self._Households.append(Temp)

class AffluentHousehold(Household):

7

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

30

 def __init__(self, X, Y):

 super(AffluentHousehold, self).__init__(X, Y)

 self._ChanceEatOutPerDay = 1

12 1 From the simulation class

def ModifyCompany(self, Index):

 print("\n*********************************")

 print("******* MODIFY COMPANY *******")

 print("*********************************")

 print("1. Open new outlet")

 print("2. Close outlet")

 print("3. Expand outlet")

 print("4. Get Loan")

 print("5. Pay back loan")

 Choice = input("\nEnter your choice: ")

 print()

 if Choice == "2" or Choice == "3":

 ...

 elif Choice == "1":

 ...

 elif Choice == "4":

 Rate = float(input("Enter the interest rate for the loan: "))

 self._Companies[Index].GetLoan(Rate)

 elif Choice == "5":

 PayBackAmount = float(input("Enter the amount to pay back: "))

 self._Companies[Index].PayBackLoan(PayBackAmount)

 print()

From the Company class

class Company:

 def __init__(self, Name, Category, Balance, X, Y, FuelCostPerUnit,

BaseCostOfDelivery):

 self._Outlets = []

 ..

 self._DailyCosts = 100

 self._InterestRate = 0.0

 self._LoanBalance = 0.0

 if self._Category == "fast food":

 ...

def ProcessDayEnd(self):

 ...

 Details += "Previous balance for company: " + str(self._Balance) +

"\n"

 self._Balance += ProfitLossFromOutlets - self._DailyCosts -

DeliveryCosts - (self._LoanBalance * self._InterestRate)

 Details += "New balance for company: " + str(self._Balance)

 return Details

def GetLoan(self, Rate):

 if self._LoanBalance == 0:

 self._Balance += 10000

 self._LoanBalance = 10000

10

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

31

 self._InterestRate = Rate

def PayBackLoan(self, Amount):

 self._LoanBalance -= Amount

 self._Balance -= Amount

Alternative answer for taking a loan

In ModifyCompany method in Simulation class

...
elif Choice == "4":

 if Companies[Index].GetLoanBalance() <= 0:

 Rate = float(input("Enter the interest rate for the loan: "))

 self._Companies[Index].TakeOutLoan(Rate)

Methods in Company Class

def GetLoanBalance(self):

 return self._LoanBalance

def TakeOutLoan(self, InterestRate):

 self._InterestRate = InterestRate

 self._LoanBalance = 10000

 self._Balance += 10000

13 1 def __GetOrderedListOfOutlets(self):

 OrderedList = [0]

 while len(OrderedList) < len(self._Outlets):

 ShortestDistanceSoFar = 1000000.0

 for Count in range(1, len(self._Outlets)):

 if not Count in OrderedList:

 Temp =

self.__GetDistanceBetweenTwoOutlets(OrderedList[len(OrderedList) -

1], Count)

 if Temp < ShortestDistanceSoFar:

 NearestOutlet = Count

 ShortestDistanceSoFar = Temp

 OrderedList.append(NearestOutlet)

 return OrderedList

def CalculateDeliveryCost(self):

 ListOfOutlets = self.__GetOrderedListOfOutlets()

 TotalDistance = 0.0

 for Current in range (0, len(ListOfOutlets) - 1):

 TotalDistance +=

self.__GetDistanceBetweenTwoOutlets(ListOfOutlets[Current],

ListOfOutlets[Current + 1])

 TotalCost = TotalDistance * self._FuelCostPerUnit

 return TotalCost

11

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

32

Python 3

Question Marks

05 1 ModeFrequency = 0

Multimodal = False

Frequencies= [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

NoOfDigits = int(raw_input("Enter number of digits: "))

for count in range (1, NoOfDigits + 1):

 Current = int(raw_input("Enter a numeric digit: "))

 Frequencies[Current] += 1

for Count in range (0, 10):

 if Frequencies[Count] > ModeFrequency:

 ModeFrequency = Frequencies[Count]

 Multimodal = False

 elif Frequencies[Count] == ModeFrequency:

 Multimodal = True

if Multimodal:

 print "Data was multimodal"

else:

 print "The modal digit appeared " + str(ModeFrequency) + " times"

12

10 1 def AddCompany(self):

 CompanyName = raw_input("Enter a name for the company: ")

 while CompanyName == "" or self.GetIndexOfCompany(CompanyName) !=

-1:

 if CompanyName == "":

 print "You have to enter a company name"

 else:

 print "Company name already exists, it has to be unique"

 CompanyName = raw_input("Enter a name for the company: ")

 Balance = int(raw_input("Enter the starting balance for the

company: "))

 TypeOfCompany = ""

 while not(TypeOfCompany == "1" or TypeOfCompany == "2" or

TypeOfCompany == "3"):

 TypeOfCompany = raw_input("Enter 1 for a fast food company, 2

for a family company or 3 for a named chef company: ")

 if TypeOfCompany == "1":

 TypeOfCompany = "fast food"

 elif TypeOfCompany == "2":

 TypeOfCompany = "family"

 else:

 TypeOfCompany = "named chef"

 X, Y = self._SimulationSettlement.GetRandomLocation()

 NewCompany = Company(CompanyName, TypeOfCompany, Balance, X, Y,

self._FuelCostPerUnit, self._BaseCostforDelivery)

 self._Companies.append(NewCompany)

5

11 1 def AddHousehold(self):

 X, Y = self.GetRandomLocation()

 if X < 100:

 Temp = AffluentHousehold(X, Y)

 self._Households.append(Temp)

 else:

 Temp = Household(X, Y)

 self._Households.append(Temp)

class AffluentHousehold(Household):

7

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

33

 def __init__(self, X, Y):

 super(AffluentHousehold, self).__init__(X, Y)

 self._ChanceEatOutPerDay = 1

12 1 From the simulation class

def ModifyCompany(self, Index):

 print "\n*********************************"

 print "******* MODIFY COMPANY *******"

 print "*********************************"

 print "1. Open new outlet"

 print "2. Close outlet"

 print "3. Expand outlet"

 print "4. Get Loan"

 print "5. Pay back loan"

 Choice = raw_input("\nEnter your choice: ")

 print

 if Choice == "2" or Choice == "3":

 ...

 elif Choice == "1":

 ...

 elif Choice == "4":

 Rate = float(raw_input("Enter the interest rate for the loan:

"))

 self._Companies[Index].GetLoan(Rate)

 elif Choice == "5":

 PayBackAmount = float(raw_input("Enter the amount to pay back:

"))

 self._Companies[Index].PayBackLoan(PayBackAmount)

 print

From the Company class

class Company:

 def __init__(self, Name, Category, Balance, X, Y, FuelCostPerUnit,

BaseCostOfDelivery):

 self._Outlets = []

 ..

 self._DailyCosts = 100

 self._InterestRate = 0.0

 self._LoanBalance = 0.0

 if self._Category == "fast food":

 ...

def ProcessDayEnd(self):

 ...

 Details += "Previous balance for company: " + str(self._Balance) +

"\n"

 self._Balance += ProfitLossFromOutlets - self._DailyCosts -

DeliveryCosts - (self._LoanBalance * self._InterestRate)

 Details += "New balance for company: " + str(self._Balance)

 return Details

def GetLoan(self, Rate):

 if self._LoanBalance == 0:

 self._Balance += 10000

 self._LoanBalance = 10000

 self._InterestRate = Rate

10

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

34

def PayBackLoan(self, Amount):

 self._LoanBalance -= Amount

 self._Balance -= Amount

Alternative answer for taking a loan

In ModifyCompany method in Simulation class

...
elif Choice == "4":

 if Companies[Index].GetLoanBalance() <= 0:

 Rate = float(raw_input("Enter the interest rate for the loan:

"))

 self._Companies[Index].TakeOutLoan(Rate)

Methods in Company Class

def GetLoanBalance(self):

 return self._LoanBalance

def TakeOutLoan(self, InterestRate):

 self._InterestRate = InterestRate

 self._LoanBalance = 10000

 self._Balance += 10000

13 1 def __GetOrderedListOfOutlets(self):

 OrderedList = [0]

 while len(OrderedList) < len(self._Outlets):

 ShortestDistanceSoFar = 1000000.0

 for Count in range(1, len(self._Outlets)):

 if not Count in OrderedList:

 Temp =

self.__GetDistanceBetweenTwoOutlets(OrderedList[len(OrderedList) -

1], Count)

 if Temp < ShortestDistanceSoFar:

 NearestOutlet = Count

 ShortestDistanceSoFar = Temp

 OrderedList.append(NearestOutlet)

 return OrderedList

def CalculateDeliveryCost(self):

 ListOfOutlets = self.__GetOrderedListOfOutlets()

 TotalDistance = 0.0

 for Current in range (0, len(ListOfOutlets) - 1):

 TotalDistance +=

self.__GetDistanceBetweenTwoOutlets(ListOfOutlets[Current],

ListOfOutlets[Current + 1])

 TotalCost = TotalDistance * self._FuelCostPerUnit

 return TotalCost

11

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

35

C#

Question Marks

05 1 int current;

int[] frequencies = new int[10];

int modeFrequency = 0;

bool multimodal = false;

int noOfDigits;

Console.Write("Enter number of digits: ");

noOfDigits = Convert.ToInt32(Console.ReadLine());

for (int i = 0; i < noOfDigits; i++)

{

 Console.Write("Enter a numeric digit: ");

 current = Convert.ToInt32(Console.ReadLine());

 frequencies[current] += 1;

}

for (int i = 0; i < 10; i++)

{

 if (frequencies[i] > modeFrequency)

 {

 modeFrequency = frequencies[i];

 multimodal = false;

 }

 else if (frequencies[i] == modeFrequency)

 {

 multimodal = true;

 }

}

if (multimodal)

{

 Console.WriteLine("Data was multimodal");

}

else

{

 Console.WriteLine("The modal digit appeared " + modeFrequency +

" times");

}

Console.ReadLine();

12

10 1 private void AddCompany()

{

 int balance, x = 0, y = 0;

 string companyName, typeOfCompany = "9";

 do

 {

 Console.Write("Enter a name for the company: ");

 companyName = Console.ReadLine();

 if (companyName == "")

 {

 Console.WriteLine("You must enter a name.");

 }

 else if (GetIndexOfCompany(companyName) != -1)

 {

 Console.WriteLine("That name is already being used.");

 }

 } while (companyName == "" || GetIndexOfCompany(companyName) !=

-1);

Console.Write("Enter the starting balance for the company: ");

5

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

36

Alternative answer

private void AddCompany()

{

 int balance, x = 0, y = 0;

 string companyName, typeOfCompany = "9";

 Console.Write("Enter a name for the company: ");

 companyName = Console.ReadLine();

 while (companyName == "" || GetIndexOfCompany(companyName) != -

1)

 {

 if (companyName == "")

 {

 Console.WriteLine("You must enter a name.");

 }

 else if (GetIndexOfCompany(companyName) != -1)

 {

 Console.WriteLine("That name is already being used.");

 }

 Console.Write("Enter a name for the company: ");

 companyName = Console.ReadLine();

 }

 Console.Write("Enter the starting balance for the company: ");

11 1 public void AddHousehold()

{

 int x = 0, y = 0;

 GetRandomLocation(ref x, ref y);

 if (x < 100)

 {

 AffluentHousehold temp = new AffluentHousehold(x, y);

 households.Add(temp);

 }

 else

 {

 Household temp = new Household(x, y);

 households.Add(temp);

 }

}

class AffluentHousehold : Household

{

 public AffluentHousehold(int x, int y)

 :base(x, y)

 {

 chanceEatOutPerDay = 1;

 }

}

7

12 1 From the simulation class

public void ModifyCompany(int index)

{

 string choice;

 int outletIndex, x, y;

 bool closeCompany;

 Console.WriteLine("\n*********************************");

 Console.WriteLine("******* MODIFY COMPANY *******");

 Console.WriteLine("*********************************");

10

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

37

 Console.WriteLine("1. Open new outlet");

 Console.WriteLine("2. Close outlet");

 Console.WriteLine("3. Expand outlet");

 Console.WriteLine("4. Get Loan");

 Console.WriteLine("5. Pay back loan");

 Console.Write("\nEnter your choice: ");

 choice = Console.ReadLine();

 if (choice == "2" || choice == "3")

 ...

 else if (choice == "1")

 ...

 else if (choice == "4")

 {

 Console.Write("Enter the interest rate for the loan: ");

 double rate = Convert.ToDouble(Console.ReadLine());

 companies[index].GetLoan(rate);

 }

 else if (choice == "5")

 {

 Console.Write("Enter the amount to pay back: ");

 double payBackAmount = Convert.ToDouble(Console.ReadLine());

 companies[index].PayBackLoan(payBackAmount);

 }

 Console.WriteLine();

}

From the company class

class Company

{

 private static Random rnd = new Random();

 protected string name, category;

 protected double balance, reputationScore, avgCostPerMeal,

avgPricePerMeal, dailyCosts, familyOutletCost, fastFoodOutletCost,

namedChefOutletCost, fuelCostPerUnit, baseCostOfDelivery;

 protected List<Outlet> outlets = new List<Outlet>();

 protected int familyFoodOutletCapacity, fastFoodOutletCapacity,

namedChefOutletCapacity;

 protected double loanBalance;

 protected double interestRate;

...

public string ProcessDayEnd()

...

 }

 details += "Previous balance for company: " + balance.ToString()

+ "\n";

 balance += profitLossFromOutlets - dailyCosts - deliveryCosts -

(loanBalance * interestRate);

 details += "New balance for company: " + balance.ToString();

 return details;

}

public void GetLoan(double rate)

{

 if (loanBalance == 0)

 {

 balance += 10000;

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

38

 interestRate = rate;

 }

}

public void PayBackLoan(double amount)

{

 loanBalance -= amount;

 balance -= amount;

}

Alternative answer for taking a loan

In ModifyCompany method in Simulation class
...

else if (choice == "4")

 {

 if (companies[index].GetLoanBalance() <= 0)

 {

 Console.Write("Enter the interest rate for

the loan: ");

 double rate =

Convert.ToDouble(Console.ReadLine());

 companies[index].TakeOutLoan(rate);

 }

 }

Methods in Company Class

public double GetLoanBalance()

{

 return loanBalance;

}

public void TakeOutLoan(double interestRate)

{

 this.interestRate = interestRate;

 loanBalance = 10000;

 balance += 10000;

}

13 1 private List<int> GetOrderedListOfOutlets()

{

 List<int> orderedList = new List<int>();

 int nearestOutlet = 0; ;

 orderedList.Add(0);

 while (orderedList.Count < outlets.Count)

 {

 double shortestDistanceSoFar = 1000000;

 for (int count = 1; count < outlets.Count ; count++)

 {

 if (!orderedList.Contains(count))

 {

 double temp =

GetDistanceBetweenTwoOutlets(orderedList[orderedList.Count - 1],

count);

11

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

39

 if (temp < shortestDistanceSoFar)

 {

 nearestOutlet = count;

 shortestDistanceSoFar = temp;

 }

 }

 }

 orderedList.Add(nearestOutlet);

 }

 return orderedList;

}

public double CalculateDeliveryCost()

{

 List<int> listOfOutlets = new

List<int>(GetOrderedListOfOutlets());

 double totalDistance = 0;

 double totalCost = 0;

 for (int current = 0; current < listOfOutlets.Count - 1;

current++)

 {

 totalDistance +=

GetDistanceBetweenTwoOutlets(listOfOutlets[current],

listOfOutlets[current + 1]);

 }

 totalCost = totalDistance * fuelCostPerUnit;

 return totalCost;

}

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

40

PASCAL/Delphi

Question Marks

05 1 var

 Current, ModeFrequency, NoOfDigits, Count : Integer;

 Frequencies : array of Integer;

 Multimodal : Boolean;

begin

 SetLength(Frequencies, 10);

 ModeFrequency := 0;

 MultiModal := False;

 for Count := 0 to 9 do

 Frequencies[Count] := 0;

 write('Enter number of digits: ');

 readln(NoOfDigits);

 for Count := 1 to NoOfDigits do

 begin

 write('Enter a numberic digit: ');

 readln(Current);

 Frequencies[Current] += 1;

 end;

 for Count := 0 to 9 do

 begin

 if Frequencies[Count] > ModeFrequency then

 begin

 ModeFrequency := Frequencies[Count];

 MultiModal := False;

 end

 else if Frequencies[Count] = ModeFrequency then

 MultiModal := True;

 end;

 if MultiModal = True then

 writeln('Data was multimodal')

 else

 writeln('The modal digit appeared ' + inttostr(ModeFrequency) +

' times');

 readln;

end.

12

10 1 procedure Simulation.AddCompany();

var

 Balance, X, Y : Integer;

 CompanyName, TypeOfCompany : String;

 NewCompany : Company;

begin

 repeat

 write('Enter a name for the company: ');

 readln(CompanyName);

 if CompanyName = '' then

 writeln('You must enter a name');

 if GetIndexOfCompany(CompanyName) <> - 1 then

 writeln('That name is already being used');

 until (CompanyName <> '') and (GetIndexOfCompany(CompanyName) = -

1);

 write('Enter the starting balance for the company: ');

Alternative Answer

write('Enter a name for the company: ');

5

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

41

readln(CompanyName);

while (CompanyName = '') or (GetIndexOfCompany(CompanyName) <> -1)

do

 begin

 if CompanyName = '' then

 writeln('You have to enter a company name')

 else

 writeln('Company name already exists - it has to be unique');

 write('Enter a name for the company: ');

 readln(CompanyName);

 end;

11 1 type

 AffluentHousehold = class(Household)

 constructor New(X : Integer; Y : Integer);

 end;

constructor AffluentHousehold.New(X : Integer; Y : Integer);

begin

 XCoord := X;

 YCoord := Y;

 ChanceEatOutPerDay := 1;

 ID := NextID;

 inc(NextID);

end;

procedure Settlement.AddHousehold();

var

 X, Y : Integer;

 Temp : Household;

 TempAff : AffluentHousehold;

begin

 SetLength(Households,length(Households) + 1);

 GetRandomLocation(X, Y);

 if X < 100 then

 begin

 TempAff := AffluentHousehold.New(X, Y);

 Households[length(Households) - 1] := TempAff;

 end

 else

 begin

 Temp := Household.New(X, Y);

 Households[length(Households) - 1] := Temp;

 end;

end;

7

12 1 From the simulation class

procedure Simulation.ModifyCompany(Index : Integer);

var

 Choice : String;

 OutletIndex, CompIndex, X, Y : Integer;

 CloseCompany : Boolean;

 Rate, PayBackAmount : Real;

begin

 writeln;

 writeln('*********************************');

 writeln('******* MODIFY COMPANY *******');

 writeln('*********************************');

 writeln('1. Open new outlet');

 writeln('2. Close outlet');

 writeln('3. Expand outlet');

10

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

42

 writeln('4. Get loan');

 writeln('5. Pay back loan');

 writeln;

 write('Enter your choice: ');

 readln(Choice);

 writeln;

 if (Choice = '2') or (Choice = '3') then

 ...

 else if Choice = '1' then

 ...

 else if Choice = '4' then

 begin

 write('Enter the interest rate for the loan: ');

 readln(Rate);

 Self.Companies[Index].GetLoan(Rate);

 end

 else if Choice = '5' then

 begin

 write('Enter the amount to pay back: ');

 readln(PayBackAmount);

 Companies[Index].PayBackLoan(PayBackAmount);

 end;

 writeln;

end;

From the Company class

type

 Company = class

 protected

 Name, Category : String;

 Balance, ReputationScore, AvgCostPerMeal, AvgPricePerMeal,

DailyCosts, FamilyOutletCost, FastFoodOutletCost,

NamedChefOutletCost, FuelCostPerUnit, BaseCostOfDelivery,

InterestRate, LoanBalance : Real;

 Outlets: TOutletArray;

 ...

 function CalculateDeliveryCost() : Real;

 procedure GetLoan(Rate : Real);

 procedure PayBackLoan(Amount : Real);

constructor Company.New(NameInput : String; CategoryInput : String;

BalanceInput : Real; X : Integer; Y : Integer; FuelCostPerUnitInput

: Real; BaseCostOfDeliveryInput : Real);

begin

 Self.FamilyOutletCost := 1000;

 Self.FastFoodOutletCost := 2000;

 Self.NamedChefOutletCost:= 15000;

 Self.FamilyFoodOutletCapacity := 150;

 Self.FastFoodOutletCapacity := 200;

 Self.NamedChefOutletCapacity := 50;

 Self.LoanBalance := 0;

 Self.Name := NameInput;

procedure Company.GetLoan(Rate : Real);

begin

 if Self.LoanBalance = 0 then

 begin

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

43

 Self.Balance += 10000;

 Self.LoanBalance := 10000;

 Self.InterestRate := Rate;

 end;

end;

procedure Company.PayBackLoan(Amount : Real);

begin

 Self.LoanBalance -= Amount;

 Self.Balance -= Amount;

end;

function Company.ProcessDayEnd() : String;

...

 Details += 'Previous balance for company: ' +

floattostr(self.Balance) + #13#10;

 Self.Balance += ProfitLossFromOutlets - Self.DailyCosts -

DeliveryCosts - (Self.LoanBalance * Self.InterestRate);

 Details += 'New balance for company: ' + floattostr(Self.Balance);

 ProcessDayEnd := Details;

end;

Alternative answer for taking a loan

In ModifyCompany method in Simulation class

 ...

 else if Choice = '4' then

 if Companies[Index].GetLoanBalance() <= 0 then

 begin

 write('Enter the interest rate for the loan: ');

 readln(Rate);

 Self.Companies[Index].GetLoan(Rate);

 end

 ...

Company Class

function GetLoanBalance(): Real;

...

function Company.GetLoanBalance() : Real;

begin

 GetLoanBalance := LoanBalance;

end;

procedure Company.GetLoan(InterestRate : Real);

begin

 Self.Balance += 10000;

 Self.LoanBalance := 10000;

 Self.InterestRate := Rate;

end;

13 1 function Company.GetOrderedListOfOutlets() : TIntegerArray;

var

 OrderedList : TIntegerArray;

11

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

44

 NearestOutlet, Count, Index, Temp : Integer;

 ShortestDistanceSoFar : Real;

 ItemInList : Boolean;

begin

 SetLength(OrderedList, 1);

 OrderedList[0] := 0;

 while length(OrderedList) < length(Self.Outlets) do

 begin

 ShortestDistanceSoFar := 1000000;

 for Count := 1 to length(Self.Outlets) - 1 do

 begin

 ItemInList := False;

 for Index := low(OrderedList) to high(OrderedList) do

 begin

 if OrderedList[Index] = Count then

 ItemInList := True;

 end;

 if ItemInList = false then

 begin

 Temp :=

trunc(GetDistanceBetweenTwoOutlets(OrderedList[length(OrderedList) -

1], Count));

 if Temp < ShortestDistanceSoFar then

 begin

 NearestOutlet := Count;

 ShortestDistanceSoFar := Temp;

 end;

 end;

 end;

 SetLength(OrderedList, length(OrderedList) + 1);

 OrderedList[high(OrderedList)] := NearestOutlet;

 end;

 GetOrderedListOfOutlets := OrderedList;

end;

function Company.CalculateDeliveryCost() : Real;

var

 ListOfOutlets : TIntegerArray;

 TotalDistance, TotalCost : Real;

 Current : Integer;

begin

 ListOfOutlets := GetOrderedListOfOutlets();

 TotalDistance := 0;

 for Current := 0 to length(ListOfOutlets) - 2 do

 TotalDistance +=

GetDistanceBetweenTwoOutlets(ListOfOutlets[Current],

ListOfOutlets[Current + 1]);

 TotalCost := TotalDistance * Self.FuelCostPerUnit;

 CalculateDeliveryCost := TotalCost;

end;

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

45

JAVA

Question Marks

05 1 int modeFrequency = 0, input;

int[] frequencies = new int[10];

boolean multimodal = false;

Console.writeLine("Enter the number of digits you would like to

enter:");

int numOfDigits = Integer.parseInt(Console.readLine());

for (int i = 0; i < numOfDigits; i++) {

 Console.writeLine("Enter a digit:");

 input = Integer.parseInt(Console.readLine());

 frequencies [input]++;

}

modeFrequency = frequencies [0];

for (int i = 1; i < 10; i++) {

 if (modeFrequency == frequencies [i]) {

 multimodal = true;

 } else if (frequencies [i] > modeFrequency) {

 multimodal = false;

 modeFrequency = frequencies [i];

 }

}

if (multimodal) {

 Console.writeLine("Data was multimodal");

} else {

 Console.writeLine("The modal digit appeared " + modeFrequency +

" times");

12

10 1 public void addCompany() {

 int balance, x, y;

 String companyName, typeOfCompany;

 do {

 Console.write("Enter a name for the company: ");

 companyName = Console.readLine();

 if (companyName.equals("")) {

 Console.writeLine("You must enter a name.");

 } else if (getIndexOfCompany(companyName) != -1) {

 Console.writeLine("That name is already being used.");

 }

 } while (companyName.equals("") ||

getIndexOfCompany(companyName) != -1);

Alternative answer

public void addCompany() {

 int balance, x, y;

 String companyName, typeOfCompany;

 Console.write("Enter a name for the company: ");

 companyName = Console.readLine();

 while (companyName.equals("") || getIndexOfCompany(companyName)

!= -1){

 if (companyName.equals("")) {

 Console.writeLine("You must enter a name.");

 } else if (getIndexOfCompany(companyName) != -1) {

 Console.writeLine("That name is already being used.");

 }

5

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

46

 Console.write("Enter a name for the company: ");

 companyName = Console.readLine();

 }

11 1 class AffluentHousehold extends Household

{

 public AffluentHousehold(int x, int y)

 {

 super(x, y);

 chanceEatOutPerDay = 1;

 }

}

public void addHousehold() {

 int x, y;

 int[] tempLocation = getRandomLocation();

 x = tempLocation[0];

 y = tempLocation[1];

 if (x < 100) {

 AffluentHousehold temp = new AffluentHousehold(x, y);

 households.add(temp);

 } else {

 Household temp = new Household(x, y);

 households.add(temp);

 }

}

7

12 1 From the simulation class

public void modifyCompany(int index) {

 String choice;

 int outletIndex, x, y;

 boolean closeCompany;

 Console.writeLine(System.lineSeparator() +

"*********************************");

 Console.writeLine("******* MODIFY COMPANY *******");

 Console.writeLine("*********************************");

 Console.writeLine("1. Open new outlet");

 Console.writeLine("2. Close outlet");

 Console.writeLine("3. Expand outlet");

 Console.writeLine("4. Get Loan");

 Console.writeLine("5. Pay back loan");

 Console.write(System.lineSeparator() + "Enter your choice: ");

 choice = Console.readLine();

 Console.writeLine();

 if (choice.equals("2") || choice.equals("3")) {

 ...

 } else if (choice.equals("1")) {

 ...

 } else if (choice.equals("4")) {

 Console.write("Enter the interest rate for the loan: ");

 float rate = Float.parseFloat(Console.readLine());

 companies.get(index).getLoan(rate);

 } else if (choice.equals("5")) {

 Console.write("Enter the amount to pay back: ");

 float payBackAmount = Float.parseFloat(Console.readLine());

 companies.get(index).payBackLoan(payBackAmount);

 }

 Console.writeLine();

10

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

47

}

From the company class

class Company {

 protected String name, category;

 protected float balance, reputationScore, avgCostPerMeal,

avgPricePerMeal, dailyCosts, familyOutletCost, fastFoodOutletCost,

namedChefOutletCost, fuelCostPerUnit, baseCostOfDelivery,

loanBalance, interestRate;

 protected List<Outlet> outlets = new ArrayList();

 protected int familyFoodOutletCapacity, fastFoodOutletCapacity,

namedChefOutletCapacity;

 private static Random rnd = new Random();

 ...

public String processDayEnd() {

 ...

 }

 details += "Previous balance for company: " + balance +

System.lineSeparator();

 balance += profitLossFromOutlets - dailyCosts - deliveryCosts -

(loanBalance * interestRate);

 details += "New balance for company: " + balance;

 return details;

}

public void getLoan(float rate)

{

 if (loanBalance == 0)

 {

 balance += 10000;

 loanBalance = 10000;

 interestRate = rate;

 }

}

public void payBackLoan(float amount)

{

 loanBalance -= amount;

 balance -= amount;

}

Alternative answer for taking a loan

In modifyCompany method in Simulation class

...
} else if (choice.equals("4")) {

 if (companies.get(index).getLoanBalance() <= 0) {

 Console.write("Enter the interest rate for the loan: ");

 float rate = Float.parseFloat(Console.readLine());

 companies.get(index).takeOutLoan(rate);

 }

}

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

48

Methods in Company Class

public float getLoanBalance()

{

 return loanBalance;

}

public void takeOutLoan(float rate)

{

 balance += 10000;

 loanBalance = 10000;

 interestRate = rate;

}

13 1 public List<Integer> getOrderedListOfOutlets()

{

 List<Integer> orderedList = new ArrayList();

 int nearestOutlet = 0;

 orderedList.add(nearestOutlet);

 while (orderedList.size() < outlets.size()) {

 float shortestDistanceSoFar = 1000000f;

 for (int count = 1; count < outlets.size(); count++) {

 if (!orderedList.contains(count)) {

 float temp =

getDistanceBetweenTwoOutlets(orderedList.get(orderedList.size()-1),

count);

 if (temp < shortestDistanceSoFar) {

 nearestOutlet = count;

 shortestDistanceSoFar = temp;

 }

 }

 }

 orderedList.add(nearestOutlet);

 }

 return orderedList;

}

public float calculateDeliveryCost() {

 List<Integer> listOfOutlets = getOrderedListOfOutlets();

 float totalDistance = 0;

 float totalCost;

 for (int current = 0; current < listOfOutlets.size() - 1;

current++) {

 totalDistance +=

getDistanceBetweenTwoOutlets(listOfOutlets.get(current),

listOfOutlets.get(current + 1));

 }

 totalCost = totalDistance * fuelCostPerUnit;

 return totalCost;

}

11

