

A-LEVEL

Computer Science

7517/1 - Paper 1

(applicable for all programming languages A, B, C, D and E)

Mark scheme

June 2018

Version/Stage: 1.0 Final

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant

questions, by a panel of subject teachers. This mark scheme includes any amendments made at the

standardisation events which all associates participate in and is the scheme which was used by them in

this examination. The standardisation process ensures that the mark scheme covers the students’

responses to questions and that every associate understands and applies it in the same correct way.

As preparation for standardisation each associate analyses a number of students’ scripts. Alternative

answers not already covered by the mark scheme are discussed and legislated for. If, after the

standardisation process, associates encounter unusual answers which have not been raised they are

required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and

expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark

schemes on the basis of one year’s document should be avoided; whilst the guiding principles of

assessment remain constant, details will change, depending on the content of a particular examination

paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal

use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for

internal use within the centre.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

3

A-level Computer Science

Paper 1 (7517/1) – applicable to all programming languages A, B, C, D and E

June 2018

The following annotation is used in the mark scheme:

; - means a single mark
// - means an alternative response
/ - means an alternative word or sub-phrase
A - means an acceptable creditworthy answer
R - means reject answer as not creditworthy
NE - means not enough
I - means ignore
DPT - means "Don't penalise twice". In some questions a specific error made by a candidate,

if repeated, could result in the loss of more than one mark. The DPT label indicates that
this mistake should only result in a candidate losing one mark, on the first occasion that
the error is made. Provided that the answer remains understandable, subsequent
marks should be awarded as if the error was not being repeated.

Pages 4 to 5 contain ‘Level of Response’ marking instructions.

Pages 6 to 21 contain the generic mark scheme.

Pages 21 to 43 contain the ‘Program Source Code’ specific to the programming languages for
questions 5, 7, 8, 9, 10 and 11.

 pages 21 to 23 – PYTHON 2
 pages 24 to 26 – PYTHON 3
 pages 26 to 30 – VB.NET
 pages 31 to 35 – C#
 pages 36 to 40 – JAVA
 pages 41 to 43 – PASCAL/Delphi

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

4

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor.
The descriptor for the level shows the average performance for the level. There are marks in
each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate
it (as instructed) to show the qualities that are being looked for. You can then apply the mark
scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer
meets the descriptor for that level. The descriptor for the level indicates the different qualities
that might be seen in the student’s answer for that level. If it meets the lowest level then go to
the next one and decide if it meets this level, and so on, until you have a match between the
level descriptor and the answer. With practice and familiarity you will find that for better answers
you will be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick
holes in small and specific parts of the answer where the student has not performed quite as
well as the rest. If the answer covers different aspects of different levels of the mark scheme
you should use a best fit approach for defining the level and then use the variability of the
response to help decide the mark within the level, ie if the response is predominantly level 3
with a small amount of level 4 material it would be placed in level 3 but be awarded a mark near
the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to
allocate marks can help with this. The exemplar materials used during standardisation will help.
There will be an answer in the standardising materials which will correspond with each level of
the mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can
compare the student’s answer with the example to determine if it is the same standard, better or
worse than the example. You can then use this to allocate a mark for the answer based on the
Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify
points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to
be exhaustive and you must credit other valid points. Students do not have to cover all of the
points mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

5

Examiners are required to assign each of the candidate’s responses to the most appropriate
level according to its overall quality, and then allocate a single mark within the level. When
deciding upon a mark in a level examiners should bear in mind the relative weightings of the
assessment objectives

eg

In question 7.1, the marks available for the AO3 elements are as follows:

AO3 (design) – 4 marks
AO3 (programming) – 8 marks

Where a candidate’s answer only reflects one element of the AO, the maximum mark they can
receive will be restricted accordingly.

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

6

01 1 All marks AO2 (analyse)

Take a vegetable from the box labelled "onions and carrots";

If it is an onion then the box labelled "onions" contains carrots and the box
labelled "carrots" contains onions and carrots. If it is a carrot then the box
labelled "carrots" contains onions and the box labelled "onions" contains carrots
and onions;

2

02 1 Mark is for AO2 (apply)

5 3 -

1

02 2 All marks AO2 (apply)

3 4 2 * + 1 –

Mark as follows:

1 mark: correct order for values and + and – either side of the 1
1 mark: * directly after 4 2

Max 1 if any errors

2

02 3 All marks AO1 (understanding)

Simpler for a machine/computer to evaluate; A. easier R. to understand

simpler to code algorithm;

Do not need brackets (to show correct order of evaluation/calculation); A. RPN
expressions cannot be ambiguous as BOD

Operators appear in the order required for computation;

No need for order of precedence of operators;

No need to backtrack when evaluating;

Max 2

2

02 4 All marks AO1 (understanding)

(Starting at LHS of expression) push values/operands onto stack; R. if operators
are also pushed onto stack

Each time operator reached pop top two values off stack (and apply operator to
them);

Add result (of applying operator) to stack;

Max 2 if any errors Max 2 if more than one stack used
Note for examiners: award 0 marks if description is not about a stack / LIFO
structure even if the word “stack” has been used

3

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

7

02

5 All marks AO1 (knowledge)

local variables;
return address;
parameters;
register values; A. example of register that would be in stack frame

Max 2

2

03 1 All marks AO2 (analyse)

1 2 3 4 5 6

1 0 2 5 3 0 8

2 2 0 1 0 0 0

3 5 1 0 0 0 4

4 3 0 0 0 1 0

5 0 0 0 1 0 5

6 8 0 4 0 5 0

Alternative answer

1 2 3 4 5 6

1 0 2 5 3 0 8

2 0 1 0 0 0

3 0 0 0 4

4 0 1 0

5 0 5

6 0

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

8

Alternative answer

1 2 3 4 5 6

1 0

2 2 0

3 5 1 0

4 3 0 0 0

5 0 0 0 1 0

6 8 0 4 0 5 0

Mark as follows:

1 mark: 0s in correct places

1 mark: all other values correct

I. non-zero symbols used to denote no edge but only for showing no edge going

from a node to itself

03 2 All marks for AO1 (understanding)

Adjacency list appropriate when there are few edges between vertices // when
graph/matrix is sparse; NE. few edges

Adjacency list appropriate when edges rarely changed;

Adjacency list appropriate when presence/absence of specific edges does not
need to be tested (frequently);

A. Alternative words which describe edge, eg connection, line, arc

Max 2

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

9

03 3 Mark is for AO2 (apply)

It contains a cycle / cycles;

1

03 4 Mark for AO1 (knowledge)

A graph where each edge has a weight/value associated with it;

1

03 5 All marks AO2 (apply)

Mark as follows:

I. output column

1 mark: first value of A is 2

1 mark: second value of A is 5 and third value is 3

1 mark: fourth and subsequent values of A are 8, 3, 7, 4, 9 with no more values

after this

1 mark: D[2] is set to 2 and then does not change

 D P

U Q V A 1 2 3 4 5 6 1 2 3 4 5 6

- 1,2

,3,

4,5

,6

- - 20 20 20 20 20 20 -1 -1 -1 -1 -1 -1

 0

1 2,3

,4,

5,6

2

2 2 1

 3 5 5 1

 4 3 3 1

 6 8 8 1

2 3,4

,5,

6

3

3 3 2

3 4,5

,6

6
7 7 3

4 5,6 5 4 4 4

5 6 6 9

6 -

7

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

10

1 mark: D[3] is set to 5 and then changes to 3 and does not change again

1 mark: correct final values for each position of array P

 D P

U Q V A 1 2 3 4 5 6 1 2 3 4 5 6

- 1,2

,3,

4,5

,6

- - 20 20 20 20 20 20 -1 -1 -1 -1 -1 -1

 0

1 2,3

,4,

5,6

2

2 2 1

 3 5 5 1

 4 3 3 1

 6 8 8 1

2 3,4

,5,

6

3

3 3 2

3 4,5

,6

6
7 7 3

4 5,6 5 4 4 4

5 6 6 9

6 -

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

11

1 mark: correct final values for D[1], D[4], D[5], D[6]

 D P

U Q V A 1 2 3 4 5 6 1 2 3 4 5 6

- 1,2

,3,

4,5

,6

- - 20 20 20 20 20 20 -1 -1 -1 -1 -1 -1

 0

1 2,3

,4,

5,6

2

2 2 1

 3 5 5 1

 4 3 3 1

 6 8 8 1

2 3,4

,5,

6

3

3 3 2

3 4,5

,6

6
7 7 3

4 5,6 5 4 4 4

5 6 6 9

6 -

Max 6 marks if any errors

03 6 Mark is for AO2 (analyse)

The shortest distance / time between locations/nodes 1 and 6;

NE distance/time between locations/nodes 1 and 6
R. shortest route/path

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

12

03 7 All marks AO2 (analyse)

Used to store the previous node/location in the path (to this node);

Allows the path (from node/location 1 to any other node/location) to be recreated //
stores the path (from node/location 1 to any other node/location);

Max 1 if not clear that the values represent the shortest path

Alternative answer

Used to store the nodes that should be traversed;

And the order that they should be traversed;

Max 1 if not clear that the values represent the shortest path

2

04 1 All marks AO1 (knowledge)

Determining if a program will halt;

Max 1 for the following points, but only award mark if 1st mark was awarded:

without running the program;
for a particular input;

2

04 2 Mark is for AO1 (understanding)

The Halting problem is non-computable / undecideable // there is no algorithm that
solves the Halting problem;
A. it is not computable

In general, inspection alone cannot always determine whether any given algorithm
will halt for its given inputs // a program cannot be written that can determine
whether any given algorithm will halt for its given inputs;

Max 1 mark

1

04 3 All marks AO1 (knowledge)

Finite set of states (in a state transition diagram);
A set of transition rules;
A (sensing) read-write head (that can move along the tape one square at a time);
Start state;
(Set of) accepting / halting states;
State register // current state;

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

13

04 4 All marks AO1 (knowledge)

A Turing machine that can execute/simulate the behaviour of any other Turing
machine // can compute any computable sequence;

Faithfully executes operations on the data precisely as the simulated TM does;
(Note: must have idea of same process)

Description of/Instructions for TM (and the TM's input) are stored on the (Universal
Turing machine's) tape // The UTM acts as an interpreter; A. take any other TM
and data as input

Alternative definition:
A UTM, U, is an interpreter that reads the description <M> of any arbitrary Turing
machine M;

and faithfully executes operations on data D precisely as M does.;

The description <M> is written at the beginning of the tape, followed by D.;

Max 2 marks

2

04 5 Mark is for AO1 (understanding)

Because it has an infinite amount of memory/tape;

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

14

05 1 4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark Scheme

Level Description Mark
Range

4 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution that meets most of the
requirements. All of the appropriate design decisions
have been taken. To award 12 marks, all of the
requirements must be met.

10-12

3 There is evidence that a line of reasoning has been
followed to produce a logically structured program. The
program displays relevant prompts, inputs the number
value and includes two iterative structures. An attempt
has been made to check for factors of the number
entered, although this may not work correctly under all
circumstances. The solution demonstrates good design
work as most of the correct design decisions have been
made.

7-9

2 A program has been written and some appropriate,
syntactically correct programming language statements
have been written. There is evidence that a line of
reasoning has been partially followed as although the
program may not have the required functionality, it can
be seen that the response contains some of the
statements that would be needed in a working solution.
There is evidence of some appropriate design work as
the response recognises at least one appropriate
technique that could be used by a working solution,
regardless of whether this has been implemented
correctly.

4-6

1 A program has been written and a few appropriate
programming language statements have been written but
there is no evidence that a line of reasoning has been
followed to arrive at a working solution. The statements
written may or may not be syntactically correct. It is
unlikely that any of the key design elements of the task
have been recognised.

1-3

12

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

15

Guidance

Evidence of AO3 design – 4 points:

Evidence of design to look for in responses:

1. Identifying that a selection structure is needed to compare user’s input with

the number 1

2. Identifying that a loop is needed that repeats from 2 to the square root of

the number entered A. half the value of the number entered A. to the

number 1 less than the number entered

3. Identifying that use of remainder operator needed A. alternative methods

to using the remainder operator that calculate if there is a remainder

4. Boolean variable (or equivalent) used to indicate if a number is prime or not

Alternative AO3 design marks:

1. Identifying that a selection structure is needed to compare user’s input with

the number 1

2. Using nested loops that generate pairs of potential factors

3. Identifying that a test is needed to compare the multiplied factor pairs with

the number being checked

4. Boolean (or equivalent) variable used to indicate if a number is prime or not

Note that AO3 (design) points are for selecting appropriate techniques to use to
solve the problem, so should be credited whether the syntax of programming
language statements is correct or not and regardless of whether the solution
works.

Evidence for AO3 programming – 8 points:

Evidence of programming to look for in response:

5. Correct termination condition on iterative structure that repeats until the

user does not want to enter another number

6. Suitable prompt, inside iterative structure that asks the user to enter a

number and number entered by user is stored in a suitable-named variable

7. Iterative structure that checks for factors has correct syntax and start/end

conditions

8. Correct test to see if a potential factor is a factor of the number entered,

must be inside the iterative structure for checking factors and the potential

factor must change each iteration

9. If an output message saying “Is prime” or “Is not prime” is shown for every

integer (greater than 1) A. any suitable message

10. Outputs correct message “Is not prime” or “Is prime” under all correct

circumstances A. any suitable message

11. Outputs message “Not greater than 1” under the correct circumstances A.

any suitable message

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

16

12. In an appropriate location in the code asks the user if they want to enter

another number R. if message will not be displayed after each time the user

has entered a number

Note for examiners: if a candidate produces an unusual answer for this question
which seems to work but does not match this mark scheme then this answer
should be referred to team leader for guidance on how it should be marked.

05

2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 05.1, including prompts on screen capture matching those
in code.
Code for 05.1 must be sensible.

Screen captures showing the number 1 being entered with the message “Not
greater than 1” displayed, then the number 5 being entered with the message “Is
prime” displayed and then the number 8 being entered with the message “Is not
prime” being displayed and program stops after user input stating they do not want
to enter another number;

A. alternative messages being displayed if they match code from 05.1

Enter a number: 1

Not greater than 1

Again (y or n)? y

Enter a number: 5

Is prime

Again (y or n)? y

Enter a number: 8

Is not prime

Again (y or n)? n

>>>

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

17

06 1 Mark is for AO2 (analyse)

Len (Python/VB only);

Length (Pascal/Java only);

IndexOf (C#/VB only);

I. case
I. spacing
R. if any additional code

1

06 2 Mark is for AO2 (analyse)

Item // RandNo // Count;

Rnd; (Java only)

A. MaxSize

I. case
I. spacing
R. if any additional code
R. if spelt incorrectly

1

06 3 All marks AO1 (understanding)

Mark as follows

 Check for 1st mark point from either solution 1 or solution 2.

 2nd mark point for Solution 1 only to be awarded if 1st mark point for Solution

1 has been awarded.

 2nd mark point for Solution 2 only to be awarded if 1st mark point for Solution

2 has been awarded

Solution 1
1st mark: With a linear queue there could be locations available that are not able to
be used A.there could be wasted space
(where there is space available in the data structure but it is unusable as it is in
front of the data items in the queue);

2nd mark:
(To avoid this issue) items in the queue are all shuffled forward when an item is
deleted from (the front of the) queue;
//
Circular lists “wrap round” so (avoid this problem as) the front of the queue does
not have to be in the first position in the data structure;

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

18

Solution 2
Alternative answer
1st mark:
Items in a linear queue are all shuffled forward when an item is deleted from (the
front);
//
No need to shuffle items forward after deleting an item in a circular queue;

2nd mark:
this makes (deleting from) (large) linear lists time inefficient;
//
meaning circular queues are more time efficient (when deleting);

06 4 Mark is for AO2 (analyse)

The queue is small in size (so the time inefficiency is not significant);

1

06 5 Mark is for AO1 (understanding)

Front // pointer to the front of the queue;

1

06 6 All marks for AO2 (analyse)

Change the Add method;

Generate a random number between 1 and 2; NE. so there is a 50% chance
Note for examiners: needs to be clear how a 50% chance is created

If it is a 1 then generate a random number from 0, 4, 8, 13, 14, 17, 18, 19 // if it is a
1 then generate a random number from those equivalent to 1-point tiles;

Otherwise generate a random number from the other numbers between 0 and 25 //
otherwise generate a random number from those equivalent to non 1-point tiles;

A. equivalent methods to the one described

Note for examiners: refer unusual answers that would work to team leader

4

06 7 All marks for AO2 (analyse)

Iterate over the characters in the string;

Get the character code for the current character;

Subtract 32 from the character code // AND the character code with the bit pattern
1011111 / 11011111 // AND the character code with (the decimal value) 95 / 223;
A. Hexadecimal equivalents

Convert that value back into a character and replace the current character with the
new character;

A. answers that create a new string instead of replace characters in the existing
string

4

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

19

Alternative answer

Iterate over the characters in the string;

Using a list of the lowercase letters and a list of the uppercase letters;

Find the index of the lowercase letter in the list of lowercase letters;

Get the character in the corresponding position in the uppercase list and replace
the current character with the new character;

A. answers that create a new string instead of replace characters in the existing
string

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

20

07 1 Mark is for AO3 (programming)

Selection structure with correct condition(s) (9, 23) added in suitable place and
value of 4 assigned to two tiles in the dictionary;

R. if any other tile values changed

1

07 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 07.1, including prompts on screen capture matching those
in code.
Code for 07.1 must be sensible.

Screen captures showing the requested test being performed and the correct
points values for J, X, Z and Q are shown; I. order of letters

TILE VALUES

Points for X: 4

Points for R: 1

Points for Q: 5

Points for Z: 5

Points for M: 2

Points for K: 3

Points for A: 1

Points for Y: 3

Points for L: 2

Points for I: 1

Points for F: 3

Points for H: 3

Points for D: 2

Points for U: 2

Points for N: 1

Points for V: 3

Points for T: 1

Points for E: 1

Points for W: 3

Points for C: 2

Points for G: 2

Points for P: 2

Points for J: 4

Points for O: 1

Points for B: 2

Points for S: 1

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

21

08 1 All marks for AO3 (programming)

Iterative structure with one correct condition added in suitable place;

Iterative structure with second correct condition and logical connective;

Suitable prompt displayed inside iterative structure or in appropriate place before
iterative structure; A. any suitable prompt

StartHandSize assigned user-entered value inside iterative structure;

Max 3 if code contains errors

4

08 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 08.1, including prompts on screen capture matching those
in code.
Code for 08.1 must be sensible.

Screen capture(s) showing that after the values 0 and 21 are entered the user is
asked to enter the start hand size again and then the menu is displayed;

++++++++++++++++++++++++++++++++++++++

+ Welcome to the WORDS WITH AQA game +

++++++++++++++++++++++++++++++++++++++

Enter start hand size: 0

Enter start hand size: 21

Enter start hand size: 5

=========

MAIN MENU

=========

1. Play game with random start hand

2. Play game with training start hand

9. Quit

Enter your choice: 1

Player One it is your turn.

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

22

09 1 All marks for AO3 (programming)

1) Create variables to store the current start, mid and end points; A. no

variable for midpoint if midpoint is calculated each time it is needed in the

code

2) Setting correct initial values for start and end variables;

3) Iterative structure with one correct condition (either word is valid or start is

greater than end); R. if code is a linear search

4) Iterative structure with 2nd correct condition and correct logic;

5) Inside iterative structure, correctly calculate midpoint between start and

end;

A. mid-point being either the position before or the position after the exact

middle if calculated midpoint is not a whole number R. if midpoint is

sometimes the position before and sometimes the position after the exact

middle R. if not calculated under all circumstances when it should be

6) Inside iterative structure there is a selection structure that compares word

at midpoint position in list with word being searched for;

7) Values of start and end changed correctly under correct circumstances;

8) True is returned if match with midpoint word found and True is not returned

under any other circumstances;

I. missing statement to display current word
Max 7 if code contains errors

8

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

23

Alternative answer using recursion

1) Create variable to store the current midpoint, start and end points passed

as parameters to subroutine; A. no variable for midpoint if midpoint is

calculated each time it is needed in the code A. midpoint as parameter

instead of as local variable

2) Initial subroutine call has values of 0 for startpoint parameter and number of

words in AllowedWords for endpoint parameter;

3) Selection structure which contains recursive call if word being searched for

is after word at midpoint;

4) Selection structure which contains recursive call if word being searched for

is before word at midpoint;

5) Correctly calculate midpoint between start and end;

A. midpoint being either the position before or the position after the exact

middle if calculated midpoint is not a whole number R. if midpoint is

sometimes the position before and sometimes the position after the exact

middle R. if not calculated under all circumstances when it should be

6) There is a selection structure that compares word at midpoint position in list

with word being searched for and there is no recursive call if they are equal

with a value of True being returned;

7) In recusive calls the parameters for start and end points have correct

values;

8) There is a selection structure that results in no recursive call and False

being returned if it is now known that the word being searched for is not in

the list;

Note for examiners: mark points 1, 2, 7 could be replaced by recursive calls that
appropriately half the number of items in the list of words passed as a parameter –
this would mean no need for start and end points. In this case award one mark for
each of the two recursive calls if they contain the correctly reduced lists and one
mark for the correct use of the length function to find the number of items in the list.
These marks should not be awarded if the list is passed by reference resulting in
the original list of words being modified.

I. missing statement to display current word
Max 7 if code contains errors

Note for examiners: refer unusual solutions to team leader

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

24

09 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 09.1, including prompts on screen capture matching those
in code.
Code for 09.1 must be sensible.

R. if comparison words not shown in screen capture r

Screen capture(s) showing that the word “jars” was entered and the words
“MALEFICIAL”, “DONGLES”, “HAEMAGOGUE”, “INTERMINGLE”, “LAGGER”,
“JOULED”, “ISOCLINAL”, “JAUKING”, “JACARANDA”, “JAMBEUX”, “JAPONICA”,
“JAROVIZE”, “JASPER”, “JARTA”, “JARRAH”, “JARRINGLY”, “JARS” are
displayed in that order;

A. “MALEFICIAL”, “DONGOLA”, “HAEMAGOGUES”, “INTERMINGLED”,
“LAGGERS”, “JOULING”, “ISOCLINE”, “JAUNCE”, “JACARE”, “JAMBING”,
“JAPPING”, “JAROVIZING”, “JASPERISES”, “JARVEY”, “JARRINGLY”, “JARTA”,
“JARS” being displayed if alternative answer for mark point 5 in 9.1 used

ALTERNATIVE ANSWERS (for different versions of text file)

Screen capture(s) showing that the word “jars” was entered and the words
“MALEATE”, “DONDER”, “HADST”, “INTERMENDIS”, “LAGAN”, “JOTTERS”,
“ISOCHROMATIC”, “JASPERS”, “JABBING”, “JALOUSIE”, “JAPANISES”,
“JARGOONS”, “JARRED”, “JASIES”, “JARUL”, “JARS” are displayed in that order;

A. “MALEATE”, “DONDERED”, “HAE”, “INTERMEDIUM”, “LAGANS”, “JOTTING”,
“ISOCHROMOSONES”, “JASPERWARES”, “JABBLED”, “JALOUSING”,
“JAPANIZED”, “JARINA”, “JARRINGS”, “JASMINES”, “JARVEYS”, “JARTAS”,
“JARSFUL”, “JARS” being displayed if alternative answer for mark point 5 in 9.1
used

Screen capture(s) showing that the word “jars” was entered and the words “LAMP”,
“DESK”, “GAGE”, “IDEAS”, “INVITATION”, “JOURNALS”, “JAMAICA”,
“JEWELLERY”, “JEAN”, “JAR”, “JAY”, “JASON”, “JARS” are displayed in that
order;

A. “LAMP”, “DESK”, “GAGE”, “IDEAS”, “INVITATIONS”, “JOURNEY”, “JAMIE”,
“JEWISH”, “JEEP”, “JAVA”, “JAPAN”, “JARS” being displayed if alternative answer
for mark point 5 in 9.1 used

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>jars

MALEFICIAL

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

25

DONGLES

HAEMAGOGUE

INTERMINGLE

LAGGER

JOULED

ISOCLINAL

JAUKING

JACARANDA

JAMBEUX

JAPONICA

JAROVIZE

JASPER

JARTA

JARRAH

JARRINGLY

JARS

Valid word

Do you want to:

 replace the tiles you used (1) OR

 get three extra tiles (2) OR

 replace the tiles you used and get three extra tiles (3)

OR

 get no new tiles (4)?

>

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

26

10 1 All marks for AO3 (programming)

1) Creating new subroutine called CalculateFrequencies with

appropriate interface; R. if spelt incorrectly I. case

2) Iterative structure that repeats 26 times (once for each letter in the

alphabet);

3) Iterative structure that looks at each word in AllowedWords;

4) Iterative structure that looks at each letter in a word and suitable nesting for

iterative structures;

5) Selection structure, inside iterative structure, that compares two letters;

A. use of built-in functions that result in same functionality as mark points 4

and 5;;

6) Inside iterative structure increases variable used to count instances of a

letter;

7) Displays a numeric count (even if incorrect) and the letter for each letter in

the alphabet; A. is done in sensible place in DisplayTileValues

8) Syntactically correct call to new subroutine from DisplayTileValues;

A. any suitable place for subroutine call

Alternative answer
If answer looks at each letter in AllowedWords in turn and maintains a count (eg in
array/list) for the number of each letter found then mark points 2 and 5 should be:

2) Creation of suitable data structure to store 26 counts.

5) Appropriate method to select count that corresponds to current letter.

Max 7 if code contains errors

8

10 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 10.1, including prompts on screen capture matching those
in code.
Code for 10.1 must be sensible.

Screen capture(s) showing correct list of letter frequencies are displayed;

I. Ignore order of letter frequency pairs
I. any additional output eg headings like “Letter” and “Count”

Letter frequencies in the allowed words are:

A 188704

B 44953

C 98231

D 81731

E 275582

F 28931

G 67910

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

27

H 60702

I 220483

J 4010

K 22076

L 127865

M 70700

N 163637

O 161752

P 73286

Q 4104

R 170522

S 234673

T 159471

U 80636

V 22521

W 18393

X 6852

Y 39772

Z 11772

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

ALTERNATIVE ANSWERS (for different versions of text file)

Letter frequencies in the allowed words are:

A 188627

B 44923

C 98187

D 81686

E 275478

F 28899

G 67795

H 60627

I 220331

J 4007

K 22028

L 127814

M 70679

N 163547

O 161720

P 73267

Q 4104

R 170461

S 234473

T 159351

U 80579

V 22509

W 18377

X 6852

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

28

Y 39760

Z 11765

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

Letter frequencies in the allowed words are:

A 5299

B 1105

C 2980

D 2482

E 7523

F 909

G 1692

H 1399

I 5391

J 178

K 569

L 3180

M 1871

N 4762

O 4177

P 1992

Q 122

R 4812

S 4999

T 4695

U 1898

V 835

W 607

X 246

Y 999

Z 128

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

29

11 1 All marks for AO3 (programming)

Modifying subroutine UpdateAfterAllowedWord:

1) Correct subroutine call to GetScoreForWordAndPrefix added in

UpdateAfterAllowedWord;

2) Result returned by GetScoreForWordAndPrefix added to

PlayerScore;

A. alternative names for subroutine GetScoreForWordAndPrefix if

match name of subroutine created

Creating new subroutine:

3) Subroutine GetScoreForWordAndPrefix created; R. if spelt

incorrectly I. case

4) All data needed (Word, TileDictionary, AllowedWords) is passed

into subroutine via interface;

5) Integer value always returned by subroutine;

Base case in subroutine:

6) Selection structure for differentiating base case and recursive case with

suitable condition (word length of 0 // 1 // 2); R. if base case will result in

recursion

7) If base case is word length is 0 then value of 0 is returned by subroutine

and there is no recursive call // if base case is word length is 1 then value of

0 is returned by subroutine and there is no recursive call // if base case is

word length is 2 the the subroutine returns 0 if the two-letter word is not a

valid word and returns the score for the two-letter word if it is a valid word;

Recursive case in subroutine:

8) Selection structure that contains code that adds value returned by call to

GetScoreForWord to score if word is valid; A. no call to subroutine

GetScoreForWord if correct code to calculate score included in sensible

place in GetScoreForWordAndPrefix subroutine R. if no check for

word being valid

9) Call to GetScoreForWordAndPrefix;

10) Result from recursive call added to score;

11) Recursion will eventually reach base case as recursive call has a

parameter that is word with last letter removed;

11

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

30

How to mark question if no attempt to use recursion:

Mark points 1-5 same as for recursive attempt. No marks awarded for mark points
6-11, instead award marks as appropriate for mark points 12-14.

12) Adds the score for the original word to the score once // sets the initial

score to be the score for the original word; A. no call to subroutine

GetScoreForWord if correct code to calculate score included in sensible

place in GetScoreForWordAndPrefix subroutine. Note for

examiners: there is no need for the answer to check if the original word is

valid

13) Iterative structure that will repeat n - 1 times where n is the length of the

word; A. n – 2 A. n

14) Inside iterative structure adds score for current prefix word, if it is a valid

word, to score once; A. no call to GetScoreForWord if own code to

calculate score is correct

Max 10 if code contains errors
Max 8 if recursion not used in an appropriate way

11 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 11.1, including prompts on screen capture matching those
in code.
Code for 11.1 must be sensible.

Screen capture(s) showing that the word abandon was entered and the new score
of 78 is displayed;

Do you want to:

 replace the tiles you used (1) OR

 get three extra tiles (2) OR

 replace the tiles you used and get three extra tiles (3)

OR

 get no new tiles (4)?

>4

Your word was: ABANDON

Your new score is: 78

You have played 7 tiles so far in this game.

Press Enter to continue

1

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

31

Python 2

05 1 import math

again = "y"

while again == "y":

 num = int(raw_input("Enter a number: "))

 if num > 1:

 prime = True

 for count in range(2, int(math.sqrt(num)) + 1):

 if num % count == 0:

 prime = False

 if prime == True:

 print "Is prime"

 else:

 print "Is not prime"

 else:

 print "Not greater than 1"

 again = raw_input("Again (y or n)? ")

12

07 1 def CreateTileDictionary():

 TileDictionary = dict()

 for Count in range(26):

 if Count in [0, 4, 8, 13, 14, 17, 18, 19]:

 TileDictionary[chr(65 + Count)] = 1

 elif Count in [1, 2, 3, 6, 11, 12, 15, 20]:

 TileDictionary[chr(65 + Count)] = 2

 elif Count in [5, 7, 10, 21, 22, 24]:

 TileDictionary[chr(65 + Count)] = 3

 elif Count in [9, 23]:

 TileDictionary[chr(65 + Count)] = 4

 else:

 TileDictionary[chr(65 + Count)] = 5

 return TileDictionary

2

08 1 …

 StartHandSize = int(raw_input("Enter start hand size:

"))

 while StartHandSize < 1 or StartHandSize > 20:

 StartHandSize = int(raw_input("Enter start hand size:

"))

…

4

09 1 def CheckWordIsValid(Word, AllowedWords):

 ValidWord = False

 Start = 0

 End = len(AllowedWords) - 1

 while not ValidWord and Start <= End:

 Mid = (Start + End) // 2

 print AllowedWords[Mid]

 if AllowedWords[Mid] == Word:

 ValidWord = True

 elif Word > AllowedWords[Mid]:

 Start = Mid + 1

 else:

 End = Mid - 1

 return ValidWord

8

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

32

10 1 def CalculateFrequencies(AllowedWords):

 print "Letter frequencies in the allowed words are:"

 for Code in range (26):

 LetterCount = 0

 LetterToFind = chr(Code + 65)

 for Word in AllowedWords:

 for Letter in Word:

 if Letter == LetterToFind:

 LetterCount += 1

 sys.stdout.write(LetterToFind + " " + LetterCount)

def DisplayTileValues(TileDictionary, AllowedWords):

 print()

 print("TILE VALUES")

 print()

 for Letter, Points in TileDictionary.items():

 sys.stdout.write("Points for " + Letter + ": " +

str(Points) + "\n")

 print()

 CalculateFrequencies(AllowedWords)

Alternative answer

def CalculateFrequencies(AllowedWords):

 for Letter in "ABCDEFGHIJKLNOPQRSTYVWXYZ":

 Count=0

 for Word in AllowedWords:

 NumberOfTimes = Word.count(Letter)

 Count = Count + NumberOfTimes

 sys.stdout.write(Letter + " " + str(Count))

Alternative answer

def CalculateFrequencies(AllowedWords):

 Counts = []

 for a in range(26):

 Counts.append(0)

 for Word in AllowedWords:

 for Letter in Word:

 Counts[ord(Letter) - 65] += 1

 for a in range(26):

 sys.stdout.write(chr(a + 65) + " " + str(Counts[a]))

8

11 1 def UpdateAfterAllowedWord(Word, PlayerTiles, PlayerScore,

PlayerTilesPlayed, TileDictionary, AllowedWords):

 PlayerTilesPlayed += len(Word)

 for Letter in Word:

 PlayerTiles = PlayerTiles.replace(Letter, "", 1)

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

 return PlayerTiles, PlayerScore, PlayerTilesPlayed

11

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

33

def GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords):

 if len(Word) <= 1:

 return 0

 else:

 Score = 0

 if CheckWordIsValid(Word, AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 Score += GetScoreForWordAndPrefix(Word[0:len(Word) -

1], TileDictionary, AllowedWords)

 return Score

Alternative answer

def GetScoreForWordAndPrefix(Word,TileDictionary,

AllowedWords):

 Score = 0

 if CheckWordIsValid(Word,AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 if len(Word[:-1]) > 0:

 Score +=GetScoreForWordAndPrefix(Word[:-1],

TileDictionary,AllowedWords)

 return Score

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

34

Python 3

05 1 import math

again = "y"

while again == "y":

 num = int(input("Enter a number: "))

 if num > 1:

 prime = True

 for count in range(2, int(math.sqrt(num)) + 1):

 if num % count == 0:

 prime = False

 if prime == True:

 print("Is prime")

 else:

 print("Is not prime")

 else:

 print("Not greater than 1")

 again = input("Again (y or n)? ")

12

07 1 def CreateTileDictionary():

 TileDictionary = dict()

 for Count in range(26):

 if Count in [0, 4, 8, 13, 14, 17, 18, 19]:

 TileDictionary[chr(65 + Count)] = 1

 elif Count in [1, 2, 3, 6, 11, 12, 15, 20]:

 TileDictionary[chr(65 + Count)] = 2

 elif Count in [5, 7, 10, 21, 22, 24]:

 TileDictionary[chr(65 + Count)] = 3

 elif Count in [9, 23]:

 TileDictionary[chr(65 + Count)] = 4

 else:

 TileDictionary[chr(65 + Count)] = 5

 return TileDictionary

2

08 1 …

 StartHandSize = int(input("Enter start hand size: "))

 while StartHandSize < 1 or StartHandSize > 20:

 StartHandSize = int(input("Enter start hand size: "))

…

4

09 1 def CheckWordIsValid(Word, AllowedWords):

 ValidWord = False

 Start = 0

 End = len(AllowedWords) - 1

 while not ValidWord and Start <= End:

 Mid = (Start + End) // 2

 print(AllowedWords[Mid])

 if AllowedWords[Mid] == Word:

 ValidWord = True

 elif Word > AllowedWords[Mid]:

 Start = Mid + 1

 else:

 End = Mid - 1

 return ValidWord

8

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

35

10 1 def CalculateFrequencies(AllowedWords):

 print("Letter frequencies in the allowed words are:")

 for Code in range (26):

 LetterCount = 0

 LetterToFind = chr(Code + 65)

 for Word in AllowedWords:

 for Letter in Word:

 if Letter == LetterToFind:

 LetterCount += 1

 print(LetterToFind, " ", LetterCount)

def DisplayTileValues(TileDictionary, AllowedWords):

 print()

 print("TILE VALUES")

 print()

 for Letter, Points in TileDictionary.items():

 print("Points for " + Letter + ": " + str(Points))

 print()

 CalculateFrequencies(AllowedWords)

Alternative answer

def CalculateFrequencies(AllowedWords):

 for Letter in "ABCDEFGHIJKLNOPQRSTYVWXYZ":

 Count=0

 for Word in AllowedWords:

 NumberOfTimes = Word.count(Letter)

 Count = Count + NumberOfTimes

 print(Letter,Count)

Alternative answer

def CalculateFrequencies(AllowedWords):

 Counts = []

 for a in range(26):

 Counts.append(0)

 for Word in AllowedWords:

 for Letter in Word:

 Counts[ord(Letter) - 65] += 1

 for a in range(26):

 print(chr(a + 65), Counts[a])

8

11 1 def UpdateAfterAllowedWord(Word, PlayerTiles, PlayerScore,

PlayerTilesPlayed, TileDictionary, AllowedWords):

 PlayerTilesPlayed += len(Word)

 for Letter in Word:

 PlayerTiles = PlayerTiles.replace(Letter, "", 1)

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

 return PlayerTiles, PlayerScore, PlayerTilesPlayed

11

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

36

def GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords):

 if len(Word) <= 1:

 return 0

 else:

 Score = 0

 if CheckWordIsValid(Word, AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 Score += GetScoreForWordAndPrefix(Word[0:len(Word) -

1], TileDictionary, AllowedWords)

 return Score

Alternative answer

def GetScoreForWordAndPrefix(Word,TileDictionary,

AllowedWords):

 Score = 0

 if CheckWordIsValid(Word,AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 if len(Word[:-1]) > 0:

 Score +=GetScoreForWordAndPrefix(Word[:-1],

TileDictionary,AllowedWords)

 return Score

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

37

Visual Basic

05 1 Sub Main()

 Dim Again As Char = "y"

 Dim Num As Integer

 Dim Prime As Boolean

 While Again = "y"

 Console.Write("Enter a number: ")

 Num = Console.ReadLine()

 If Num > 1 Then

 Prime = True

 For Count = 2 To System.Math.Sqrt(Num)

 If Num Mod Count = 0 Then

 Prime = False

 End If

 Next

 If Prime Then

 Console.WriteLine("Is prime")

 Else

 Console.WriteLine("Is not prime")

 End If

 Else

 Console.WriteLine("Not greater than 1")

 End If

 Console.Write("Again (y or n)? ")

 Again = Console.ReadLine()

 End While

End Sub

12

07 1 Function CreateTileDictionary() As Dictionary(Of Char,

Integer)

 Dim TileDictionary As New Dictionary(Of Char,

Integer)()

 For Count = 0 To 25

 If Array.IndexOf({0, 4, 8, 13, 14, 17, 18, 19},

Count) > -1 Then

 TileDictionary.Add(Chr(65 + Count), 1)

 ElseIf Array.IndexOf({1, 2, 3, 6, 11, 12, 15, 20},

Count) > -1 Then

 TileDictionary.Add(Chr(65 + Count), 2)

 ElseIf Array.IndexOf({5, 7, 10, 21, 22, 24},

Count) > -1 Then

 TileDictionary.Add(Chr(65 + Count), 3)

 ElseIf Array.IndexOf({9, 23}, Count) > -1 Then

 TileDictionary.Add(Chr(65 + Count), 4)

 Else

 TileDictionary.Add(Chr(65 + Count), 5)

 End If

 Next

 Return TileDictionary

End Function

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

38

08 1 …

Do

 Console.Write("Enter start hand size: ")

 StartHandSize = Console.ReadLine()

Loop Until StartHandSize >= 1 And StartHandSize <= 20

…

4

09 1 Function CheckWordIsValid(ByVal Word As String, ByRef

AllowedWords As List(Of String)) As Boolean

 Dim ValidWord As Boolean = False

 Dim LStart As Integer = 0

 Dim LMid As Integer

 Dim LEnd As Integer = Len(AllowedWords) - 1

 While Not ValidWord And LStart <= LEnd

 LMid = (LStart + LEnd) \ 2

 Console.WriteLine(AllowedWords(LMid))

 If AllowedWords(LMid) = Word Then

 ValidWord = True

 ElseIf Word > AllowedWords(LMid) Then

 LStart = LMid + 1

 Else

 LEnd = LMid - 1

 End If

 End While

 Return ValidWord

End Function

8

10 1 Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim LetterCount As Integer

 Dim LetterToFind As Char

 Console.WriteLine("Letter frequencies in the allowed

words are:")

 For Code = 0 To 25

 LetterCount = 0

 LetterToFind = Chr(Code + 65)

 For Each Word In AllowedWords

 For Each Letter In Word

 If Letter = LetterToFind Then

 LetterCount += 1

 End If

 Next

 Next

 Console.WriteLine(LetterToFind & " " &

LetterCount)

 Next

End Sub

Sub DisplayTileValues(ByVal TileDictionary As

Dictionary(Of Char, Integer), ByRef AllowedWords As

List(Of String))

 Console.WriteLine()

 Console.WriteLine("TILE VALUES")

 Console.WriteLine()

 For Each Tile As KeyValuePair(Of Char, Integer) In

8

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

39

TileDictionary

 Console.WriteLine("Points for " & Tile.Key & ": "

& Tile.Value)

 Next

 Console.WriteLine()

 CalculateFrequencies(AllowedWords)

End Sub

Alternative answer

Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim NumberOfTimes, Count As Integer

 Console.WriteLine("Letter frequencies in the allowed

words are:")

 For Each Letter In "ABCDEFGHIJKLMOPQRSTUVWXYZ"

 Count = 0

 For Each Word In AllowedWords

 NumberOfTimes = Word.Split(Letter).Length - 1

 Count += NumberOfTimes

 Next

 Console.WriteLine(Letter & " " & Count)

 Next

End Sub

Alternative answer

Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim Counts(25) As Integer

 For Count = 0 To 25

 Counts(Count) = 0

 Next

 Console.WriteLine("Letter frequencies in the allowed

words are:")

 For Each Word In AllowedWords

 For Each Letter In Word

 Counts(Asc(Letter) - 65) += 1

 Next

 Next

 For count = 0 To 25

 Console.WriteLine(Chr(count + 65) & " " &

Counts(count))

 Next

End Sub

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

40

11 1 Sub UpdateAfterAllowedWord(ByVal Word As String, ByRef

PlayerTiles As String, ByRef PlayerScore As Integer, ByRef

PlayerTilesPlayed As Integer, ByVal TileDictionary As

Dictionary(Of Char, Integer), ByRef AllowedWords As

List(Of String))

 PlayerTilesPlayed += Len(Word)

 For Each Letter In Word

 PlayerTiles = Replace(PlayerTiles, Letter, "", ,

1)

 Next

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

End Sub

Function GetScoreForWordAndPrefix(ByVal Word As String,

ByVal TileDictionary As Dictionary(Of Char, Integer),

ByRef AllowedWords As List(Of String)) As Integer

 Dim Score As Integer

 If Len(Word) <= 1 Then

 Return 0

 Else

 Score = 0

 If CheckWordIsValid(Word, AllowedWords) Then

 Score += GetScoreForWord(Word, TileDictionary)

 End If

 Score += GetScoreForWordAndPrefix(Mid(Word, 1,

Len(Word) - 1), TileDictionary, AllowedWords)

 End If

 Return Score

End Function

Alternative answer

Function GetScoreForWordAndPrefix(ByVal Word As String,

ByVal TileDictionary As Dictionary(Of Char, Integer),

ByRef AllowedWords As List(Of String)) As Integer

 Dim Score As Integer = 0

 If CheckWordIsValid(Word, AllowedWords) Then

 Score += GetScoreForWord(Word, TileDictionary)

 End If

 If Len(Word) - 1 > 0 Then

 Score += GetScoreForWordAndPrefix(Mid(Word, 1,

Len(Word) - 1), TileDictionary, AllowedWords)

 End If

 Return Score

End Function

11

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

41

 C#

05 1 {

 string Again = "Y";

 int Num = 0;

 bool Prime = true;

 while (Again == "Y")

 {

 Console.Write("Enter a number: ");

 Num = Convert.ToInt32(Console.ReadLine());

 if (Num > 1)

 {

 for (int Count = 2; Count <

Convert.ToInt32(Math.Sqrt(Num)) + 1; Count++)

 {

 if (Num % Count == 0)

 {

 Prime = false;

 }

 }

 if (Prime == true)

 {

 Console.WriteLine("Is prime");

 }

 else

 {

 Console.WriteLine("Is not prime");

 }

 }

 else

 {

 Console.WriteLine("Not greater than 1");

 }

 Console.Write("Again (y or n)? ");

 Again = Console.ReadLine().ToUpper();

 }

}

12

07 1 private static void CreateTileDictionary(ref

Dictionary<char, int> TileDictionary)

{

 int[] Value1 = { 0, 4, 8, 13, 14, 17, 18, 19 };

 int[] Value2 = { 1, 2, 3, 6, 11, 12, 15, 20 };

 int[] Value3 = { 5, 7, 10, 21, 22, 24 };

 int[] Value4 = { 9, 23 };

 for (int Count = 0; Count < 26; Count++)

 {

 if (Value1.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 1);

 }

 else if (Value2.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 2);

 }

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

42

 else if (Value3.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 3);

 }

 else if (Value4.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 4);

 }

 else

 {

 TileDictionary.Add((char)(65 + Count), 5);

 }

 }

}

08 1 …

do

{

 Console.Write("Enter start hand size: ");

 StartHandSize = Convert.ToInt32(Console.ReadLine());

} while (StartHandSize < 1 || StartHandSize > 20);

…

4

09 1 private static bool CheckWordIsValid(string Word,

List<string> AllowedWords)

{

 bool ValidWord = false;

 int Start = 0;

 int End = AllowedWords.Count - 1;

 int Mid = 0;

 while (!ValidWord && Start <= End)

 {

 Mid = (Start + End) / 2;

 Console.WriteLine(AllowedWords[Mid]);

 if (AllowedWords[Mid] == Word)

 {

 ValidWord = true;

 }

 else if (string.Compare(Word, AllowedWords[Mid]) > 0)

 {

 Start = Mid + 1;

 }

 else

 {

 End = Mid -1;

 }

 }

 return ValidWord;

}

8

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

43

10 1 private static void CalculateFrequencies(List<string>

AllowedWords)

{

 Console.WriteLine("Letter frequencies in the allowed

words are:");

 int LetterCount = 0;

 char LetterToFind;

 for (int Code = 0; Code < 26; Code++)

 {

 LetterCount = 0;

 LetterToFind = (char)(Code + 65);

 foreach (var Word in AllowedWords)

 {

 foreach (var Letter in Word)

 {

 if (Letter == LetterToFind)

 {

 LetterCount++;

 }

 }

 }

 Console.WriteLine(LetterToFind + " " + LetterCount);

 }

}

private static void DisplayTileValues(Dictionary<char,

int> TileDictionary, List<string> AllowedWords)

{

 Console.WriteLine();

 Console.WriteLine("TILE VALUES");

 Console.WriteLine();

 char Letter;

 int Points;

 foreach (var Pair in TileDictionary)

 {

 Letter = Pair.Key;

 Points = Pair.Value;

 Console.WriteLine("Points for " + Letter + ": " +

Points);

 }

 CalculateFrequencies(AllowedWords);

 Console.WriteLine();

}

Alternative answer

private static void CalculateFrequencies(List<string>

AllowedWords)

{

 Console.WriteLine("Letter frequencies in the allowed

words are:");

 int LetterCount = 0;

 string Alphabet = "ABCDEFGHIJKLNOPQRSTYVWXYZ";

 foreach (var Letter in Alphabet)

 {

8

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

44

 LetterCount = 0;

 foreach (var Words in AllowedWords)

 {

 LetterCount = LetterCount +

(Words.Split(Letter).Length - 1);

 }

 Console.WriteLine(Letter + " " + LetterCount);

 }

}

Alternative answer

private static void CalculateFrequencies(List<string>

AllowedWords)

{

 List<int> Counts = new List<int>() ;

 for (int i = 0; i < 26; i++)

 {

 Counts.Add(0);

 }

 foreach (var Words in AllowedWords)

 {

 foreach (var Letter in Words)

 {

 Counts[(int)Letter - 65]++;

 }

 }

 for (int a = 0; a < 26; a++)

 {

 char Alpha =Convert.ToChar(a + 65);

 Console.WriteLine(Alpha + " " + Counts[a]);

 }

}

11 1 private static void UpdateAfterAllowedWord(string Word,

ref string PlayerTiles, ref int PlayerScore, ref int

PlayerTilesPlayed, Dictionary<char, int> TileDictionary,

List<string> AllowedWords)

{

 PlayerTilesPlayed = PlayerTilesPlayed + Word.Length;

 foreach (var Letter in Word)

 {

 PlayerTiles =

PlayerTiles.Remove(PlayerTiles.IndexOf(Letter), 1);

 }

 PlayerScore = PlayerScore +

GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords);

}

private static int GetScoreForWordAndPrefix(string Word,

Dictionary<char, int> TileDictionary, List<string>

AllowedWords)

{

 int Score = 0;

 if (Word.Length <= 1)

11

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

45

 {

 return 0;

 }

 else

 {

 Score = 0;

 if (CheckWordIsValid(Word, AllowedWords))

 {

 Score = Score + GetScoreForWord(Word,

TileDictionary);

 }

 Score = Score +

GetScoreForWordAndPrefix(Word.Remove(Word.Length - 1),

TileDictionary, AllowedWords);

 return Score;

 }

}

Alternative answer

private static int GetScoreForWordAndPrefix(string Word,

Dictionary<char, int> TileDictionary, List<string>

AllowedWords)

{

 int Score = 0;

 if (CheckWordIsValid(Word, AllowedWords))

 {

 Score = Score + GetScoreForWord(Word, TileDictionary);

 }

 if (Word.Remove(Word.Length - 1).Length > 0)

 {

 Score = Score +

GetScoreForWordAndPrefix(Word.Remove(Word.Length - 1),

TileDictionary, AllowedWords);

 }

 return Score;

}

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

46

Java

05 1 public static void main(String[] args)

{

 String again;

 do {

 Console.println("Enter a number:");

 int number = Integer.parseInt(Console.readLine());

 if(number <= 1)

 {

 Console.println("Not greater than 1");

 }

 else

 {

 boolean prime = true;

 int count = number - 1;

 while (prime && count > 1)

 {

 if(number%count == 0)

 {

 prime = false;

 }

 count--;

 }

 if(prime)

 {

 Console.println("Is prime");

 }

 else

 {

 Console.println("Is not prime");

 }

 }

 Console.println("Would you like to enter another

number? YES/NO");

 again = Console.readLine();

 } while (again.equals("YES"));

}

12

07 1 Map createTileDictionary()

{

 Map<Character,Integer> tileDictionary = new

HashMap<Character,Integer>();

 for (int count = 0; count < 26; count++)

 {

 switch (count) {

 case 0:

 case 4:

 case 8:

 case 13:

 case 14:

 case 17:

 case 18:

 case 19:

 tileDictionary.put((char)(65 + count), 1);

 break;

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

47

 case 1:

 case 2:

 case 3:

 case 6:

 case 11:

 case 12:

 case 15:

 case 20:

 tileDictionary.put((char)(65 + count), 2);

 break;

 case 5:

 case 7:

 case 10:

 case 21:

 case 22:

 case 24:

 tileDictionary.put((char)(65 + count), 3);

 break;

 case 9:

 case 23:

 tileDictionary.put((char)(65 + count), 4);

 break;

 default:

 tileDictionary.put((char)(65 + count), 5);

 break;

 }

 }

 return tileDictionary;

}

08 1 ...

 do {

 Console.println("Enter start hand size: ");

 startHandSize = Integer.parseInt(Console.readLine());

 } while (startHandSize < 1 || startHandSize > 20);

...

4

09 1 boolean checkWordIsValid(String word, String[]

allowedWords)

{

 boolean validWord = false;

 int start = 0;

 int end = allowedWords.length - 1;

 int mid = 0;

 while (!validWord && start <= end)

 {

 mid = (start + end) / 2;

 Console.println(allowedWords[mid]);

 if (allowedWords[mid].equals(word))

 {

 validWord = true;

 }

 else if (word.compareTo(allowedWords[mid]) > 0)

 {

 start = mid + 1;

8

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

48

 }

 else

 {

 end = mid -1;

 }

 }

 return validWord;

}

10 1 void calculateFrequencies(String[] allowedWords)

{

 int letterCount;

 char letterToFind;

 for (int count = 0; count < 26; count++)

 {

 letterCount = 0;

 letterToFind = (char)(65 + count);

 for(String word:allowedWords)

 {

 for(char letter : word.toCharArray())

 {

 if(letterToFind == letter)

 {

 letterCount++;

 }

 }

 }

 Console.println(letterToFind + ", Frequency: " +

letterCount);

 }

}

void displayTileValues(Map tileDictionary, String[]

allowedWords)

{

 Console.println();

 Console.println("TILE VALUES");

 Console.println();

 for (Object letter : tileDictionary.keySet())

 {

 int points = (int)tileDictionary.get(letter);

 Console.println("Points for " + letter + ": " +

points);

 }

 calculateFrequencies(allowedWords);

 Console.println();

}

Alternative answer

void calculateFrequencies(String[] allowedWords)

{

 int letterCount;

 String alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 for(char letter: alphabet.toCharArray())

8

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

49

 {

 letterCount = 0;

 for(String word: allowedWords)

 {

 letterCount += word.split(letter + "").length

- 1;

 }

 Console.println(letter + ", Frequency: " +

letterCount);

 }

}

Alternative answer

void calculateFrequencies(String[] allowedWords)

{

 int[] counts = new int[26];

 for(String word: allowedWords)

 {

 for(char letter: word.toCharArray())

 {

 int letterPostion = (int)letter - 65;

 counts[letterPostion]++;

 }

 }

 for (int count = 0; count < 26; count++)

 {

 char letter = (char)(65 + count);

 Console.println(letter + ", Frequency: " +

counts[count]);

 }

}

11 1 int getScoreForWordAndPrefix(String word, Map

tileDictionary, String[] allowedWords)

{

 int score = 0;

 if(word.length() < 2)

 {

 return 0;

 }

 else

 {

 if(checkWordIsValid(word, allowedWords))

 {

 score = getScoreForWord(word, tileDictionary);

 }

 word = word.substring(0, word.length()-1);

 return score + getScoreForWordAndPrefix(word,

tileDictionary, allowedWords);

 }

}

void updateAfterAllowedWord(String word, Tiles

11

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

50

playerTiles,

 Score playerScore, TileCount playerTilesPlayed,

Map tileDictionary,

 String[] allowedWords)

{

 playerTilesPlayed.numberOfTiles += word.length();

 for(char letter : word.toCharArray())

 {

 playerTiles.playerTiles =

playerTiles.playerTiles.replaceFirst(letter+"", "");

 }

 playerScore.score += getScoreForWordAndPrefix(word,

tileDictionary, allowedWords);

}

Alternative answer

int getScoreForWordAndPrefix(String word, Map tileDictionary, String[]
allowedWords)
{
 int score = 0;
 if(checkWordIsValid(word, allowedWords))
 {
 score += getScoreForWord(word, tileDictionary);
 }
 word = word.substring(0, word.length()-1);
 if(word.length()>1)
 {
 score += getScoreForWordAndPrefix(word, tileDictionary,
allowedWords);
 }
 return score;
}

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

51

Pascal/Delphi

05 1 var

 again : string;

 num, count : integer;

 prime : boolean;

begin

 again := 'y';

 while again = 'y' do

 begin

 write('Enter a number: ');

 readln(num);

 if num > 1 then

 begin

 prime := True;

 for count := 2 to round(sqrt(num)) do

 if num mod count = 0 then

 prime := False;

 if prime = true then

 writeln('Is prime')

 else

 writeln('Is not prime');

 end

 else

 writeln('Not greater than 1');

 write('Again (y or n)? ');

 readln(again);

 end;

 readln;

end.

12

07 1 function CreateTileDictionary() : TTileDictionary;

 var

 TileDictionary : TTileDictionary;

 Count : integer;

 begin

 TileDictionary := TTileDictionary.Create();

 for Count := 0 to 25 do

 begin

 case count of

 0, 4, 8, 13, 14, 17, 18, 19:

TileDictionary.Add(chr(65 + count), 1);

 1, 2, 3, 6, 11, 12, 15, 20:

TileDictionary.Add(chr(65 + count), 2);

 5, 7, 10, 21, 22, 24: TileDictionary.Add(chr(65

+ count), 3);

 9, 23: TileDictionary.Add(chr(65 + count), 4);

 else TileDictionary.Add(chr(65 + count), 5);

 end;

 end;

 CreateTileDictionary := TileDictionary;

 end;

2

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

52

08 1 …

StartHandSize := 0;

Choice := '';

while (StartHandSize < 1) or (StartHandSize > 20) do

 begin

 write('Enter start hand size: ');

 readln(StartHandSize);

 end;

…

4

09 1 function CheckWordIsValid(Word : string; AllowedWords :

array of string) : boolean;

 var

 ValidWord : boolean;

 Start, Mid, EndValue : integer;

 begin

 ValidWord := False;

 Start := 0;

 EndValue := length(AllowedWords) - 1;

 while (not(ValidWord)) and (Start <= EndValue) do

 begin

 Mid := (Start + EndValue) div 2;

 writeln(AllowedWords[Mid]);

 if AllowedWords[Mid] = Word then

 ValidWord := True

 else if Word > AllowedWords[Mid] then

 Start := Mid + 1

 else

 EndValue := Mid - 1;

 end;

 CheckWordIsValid := ValidWord;

 end;

8

10 1 procedure CalculateFrequencies(AllowedWords : array of

string);

 var

 Code, LetterCount : integer;

 LetterToFind, Letter : char;

 Word : string;

 begin

 writeln('Letter frequencies in the allowed words

are:');

 for Code := 0 to 25 do

 begin

 LetterCount := 0;

 LetterToFind := chr(65 + Code);

 for Word in AllowedWords do

 begin

 for Letter in Word do

 begin

 if Letter = LetterToFind then

 LetterCount := LetterCount + 1;

 end;

 end;

 writeln(LetterToFind, ' ', LetterCount);

8

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2018

53

 end;

 end;

11 1 function GetScoreForWordAndPrefix(Word : string;

TileDictionary : TTileDictionary; AllowedWords : array of

string) : integer;

 var

 Score : integer;

 begin

 if length(word) <= 1 then

 Score := 0

 else

 begin

 Score := 0;

 if CheckWordIsValid(Word, AllowedWords) then

 Score := Score + GetScoreForWord(Word,

TileDictionary);

 Delete(Word,length(Word),1);

 Score := Score + GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords);

 end;

 GetScoreForWordAndPrefix := Score;

 end;

procedure UpdateAfterAllowedWord(Word : string; var

PlayerTiles : string; var PlayerScore : integer; var

PlayerTilesPlayed : integer; TileDictionary :

TTileDictionary; var AllowedWords : array of string);

 var

 Letter : Char;

 begin

 PlayerTilesPlayed := PlayerTilesPlayed + length(Word);

 for Letter in Word do

 Delete(PlayerTiles,pos(letter, PlayerTiles),1);

 PlayerScore := PlayerScore +

GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords);

 end;

11

