@ Pearson

Edexcel

Mark Scheme (Results)

Summer 2024

Pearson Edexcel GCSE In
Computer Science (1CP2/02)

Paper 2: Application of Computational
Thinking

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We
provide a wide range of qualifications including academic, vocational, occupational and
specific programmes for employers. For further information visit our qualifications websites
at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the

details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress
in their lives through education. We believe in every kind of learning, for all kinds of people, wherever
they are in the world. We've been involved in education for over 150 years, and by working across
70 countries, in 100 languages, we have built an international reputation for our commitment to high
standards and raising achievement through innovation in education. Find out more about how we
can help you and your students at: www.pearson.com/uk

Summer 2024

Question Paper Log Number P75441
Publications Code 1CP2_02_2406_MS

All the material in this publication is copyright
© Pearson Education Ltd 2024

http://www.edexcel.com/
http://www.btec.co.uk/
http://www.edexcel.com/contactus
http://www.pearson.com/uk

General Marking Guidance

o All candidates must receive the same
treatment. Examiners must mark the first candidate in
exactly the same way as they mark the last.

e Mark schemes should be applied positively. Candidates
must be rewarded for what they have shown they can do
rather than penalised for omissions.

e Examiners should mark according to the mark scheme
not according to their perception of where the grade
boundaries may lie.

e Thereis no ceiling on achievement. All marks on the mark
scheme should be used appropriately.

e All the marks on the mark scheme are designed to be
awarded. Examiners should always award full marks if
deserved, i.e. if the answer matches the mark
scheme. Examiners should also be prepared to award
zero marks if the candidate’s response is not worthy of
credit according to the mark scheme.

e Where some judgement is required, mark schemes will
provide the principles by which marks will be awarded
and exemplification may be limited.

e When examiners are in doubt regarding the application
of the mark scheme to a candidate’s response, the team
leader must be consulted.

e Crossed out work should be marked UNLESS the
candidate has replaced it with an alternative response.

2406 1CP2 02 Mark Scheme

Questio ADDX Mark
n MP PPX- 1 Answer Additional guidance
Line
number
1 Award marks as shown.
1.1 5 Remove double quote from list of integers (1) . 577, 597, 622]
1.2 Capitalise false to make it a keyword (1) found = False
. e O
1.3 8 Change 0123 to any integer value (1) e Allow any numeric value
1.4 15 Add closing bracket for integer conversion (1) index = int (input ("Enter an index:"))
1.5 21 Correct ‘color’ to ‘colour’ (1) colour = rainbow[index]
print (colour)
22 Correct type conversion attempting to print an int() | print ((colour))
1.6 to convert to string (1) print (str (colour))
e Allow any method
\ Fe A if ((wavelength < 380) or
1.7 26 Correct ‘and’ to ‘or’ (1) (wavelength > 622)):
1.8 29 Correct 1 to 0 (1) index = @
elif (waveTable[index] > wavelength):
e Allow >=
1.9 35 Correct <=to > (1) e Allow reversal of arguments:
elif(wavelength <= waveTable[index])
1.10 37 Correct [index - 2] to [index - 1] (1) print (rainbow[index - 1]) (10)

W ~-Jo bW

B W WWWWWWWWWMNNNNDNNNODNMNNMNNMNNREREREPRPRPERERRPRPRRRRE
CwWwow-Jo U WNhMPFRPROoOWWOJoOUd WNMNEFP,ROWLWTJO U W EFE O W

rainbow = ["Violet", "Indigo", "Blue", "Green", "Yellow", "Orange",

waveTable = [380, 425, 450, 492, 577, 597, 622]
found = False

index = 0

wavelength = 0

colour = ""

B

User chooses a colour index
index = int (input ("Enter an index: "))
if (index < 0):
print ("Indexes cannot be zero")
elif (index > 6€):
print ("Indexes cannot be more than six")
else:
colour = rainbow[index]
print (colour)

User chooses a colour based on wavelength
wavelength = int (input ("Enter a wavelength "))
if ((wavelength < 380) or (wavelength > 622)):
print ("Invalid wavelength")
else:
index = 0
Look for a wavelength less than or equal to user's choice
while (not found):
if (wavelength == waveTable[index]):
found = True
print (rainbow[index])
elif (waveTable[index] > wavelength) :
found = True
print (rainbow[index - 11])
else:
index = index + 1

"Red"]

Question | MP Appx. | Answer Additional guidance Mark
number Line
2 Award marks as shown. e Do not award mark if more than
2.1 20 if (letter.isalpha ()): (1) one line in each group of four is
uncommented
2.2 29 if (letter.isupper ()): (1)
2.3 32 if (value > ord ('Z')): (1)
2.4 41 elif (value < ord ('A")): (1)
2.5 48 elif (letter.islower ()): (1)
2.6 55 if (value > ord ('z')): (1)
2.7 60 elif (value < ord ('a"')): (1)
2.8 68 newLetter = chr (value) (1)
2.9 76 cipherText = cipherText + newLetter (1)
2.10 81 cipherText = cipherText + letter (1)

(10)

W 1o bW

bR R B B WWWWWWWWWWwMNhNhDRNDNMNNDNNNNMNNMMDMNNDNNNRERERRPRPERERERERRERERERE
b WhPrRoOoOwwOoOTdJOOOUE WNRFRFOWVWOOTITOOUE WNRPRPOWOJO U WNhE OW

plainText = ""
cipherText = ""
shift = 0

plainText = input ("Enter a message: ")
shift = int (input ("Enter the shift: "))

for letter in plainText:

=====> Choose the correct line to check for alphabetic letters
#1if (letter.isalnum ()):

#if (letter.islower ()):

#if (letter.upper ()):

if (letter.isalpha ()):

= ord (letter)
value = value + shift

<

0
'_l

o

®
|

=====> Choose the correct line to check for upper case
#if (letter.upper ()):

#if (letter.isalpha ()):

#if (letter.islower ()):

if (letter.isupper ()):

=====> Choose the correct line to check if the letter ic
if (value > ord ('Z2")):
#if (value >= ord ('Z'")):
#if (value < chr ('Z2'")):
$#if (value < ord ('Z')):
value = value - 26

4 =====> Choose the correct line to check if the letter ic
#elif (value <= ord ('A'")):

#elif (value > chr ('A')):

elif (value < ord ('A")):

#elif (value > ord ('A")):

value = value + 26

46
47
48
49
50
51
52
53
54
S5
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

=====> Choose the correct line to check for lower case
#elif (letter.lower ()):

elif (letter.islower ()):

#elif (letter.isupper ()):

#elif (letter.isalpha ()):

=====> Choose the correct line to check if the letter is o1
#if (value >= chr ('z')):
#if (value < ord ('z')):
if (value > ord ('z')):
#if (value <= chr ('z')):
value = value - 26

=====> Choose the correct line to check if the letter is o1

elif (value < ord ('a')):

#elif (value < chr ('z')):

#elif (value != ord ('a')):

#elif (value == chr ('z')):
value = value + 26

=====> Choose the correct line to set the wvariable newlLetter
#newLetter = ord (value)

newLetter = chr (value)

#newLetter = ord (letter)

#tnewLetter = chr (letter)

=====> Choose the correct line to create the encrypted string
#cipherText = newlLetter + cipherText
#newlLetter = cipherText + newlLetter
#newletter = newlLetter + cipherText
cipherText = cipherText + newletter

=====> Choose the correct line to create the encrypted string
#cipherText = letter + cipherText

cipherText = cipherText + letter

#letter = cipherText + letter

#letter = letter + cipherText

print ("Plain text: ", plainText)

print("Cipher text: ", cipherText)

Cuedien MP Ap_)px. Answer Additional guidance AR
number Line
3 Award marks as shown.
purchaseType = int (0)
purchaseType = int () along with
3.1 18 purchaseType = 0 (1) purchaseType = 0
Do not award spelling or transcription errors for
this mark
3.2 26 PURCHASE_TYPE_ITEM (1)
3.3 26 and (1)
PURCHASE_TYPE_WEIGHT (1) Allow
3.4 30 = e != PURCHASE_TYPE_ITEM
3.5 33 float (1)
3.6 38 * (1)
All
3.7 | 42 |<=0(1) o
o <1
All
3.8 48 > (1) o
o I=
e Must be syntactically correct
e Must include both message and total
3.9 51 print ("Total cost is", totalCost) (1) * Allow any message text
e Allow concatenation (+) if conversion to string
provided for variable
e Ignore formatting of currency, if attempted
3.10 Functions for test data given in paper (1) (10)

Test Data

Purchase | Count of Weight in
. . Output
Type items kilograms
1 3 Total cost is 3.69
1 0 Invalid number of items
5 4.5 Total cost is 15.525
5 -6.6 Invalid weight
QP = Invalid category
3 OR

Code = Invalid purchase type

10

O oo Jo Ul b W

GWWWWWWWWWNRNNNMNMNNRNNNNEERERPEERRERERERE PP
OO UPd WNRFOWOJIOWUD WNEFOWOJIULE WN RO

=9
40
41
42
43
44
45
46
47
48
49
50
il

PURCHASE TYPE ITEM = 1
PURCHASE TYPE WEIGHT = 5

PRICE PER KILOGRAM = 3.45
PRICE PER ITEM = 1.23

weight = 0.0
count = 0
totalCost = 0.0

=====> Create an integer variable named purchaseType and set it to 0
purchaseType = 0

Main program

purchaseType = int (input ("Enter a purchase type (1 or 5) "))

=====> Complete the line with the correct logical operator and the correct constant
if ((purchaseType !'= PURCHASE TYPE ITEM) and (purchaseType != PURCHASE TYPE WEIGHT)) :

print ("Invalid purchase type")

=====> Complete the line with the correct constant
elif (purchaseType == PURCHASE TYPE WEIGHT) :
=====> Complete the line to accept a real value for the weight in kilograms

weight = float (input ("Enter weight in kilograms "))
if (weight <= 0):
print ("Invalid weight")

else:
=====> Complete the line to calculate the total cost based on weight
totalCost = weight * PRICE_PER KILOGRAM
else:
count = int (input ("Enter count of items "))
=====> Complete the line to check for a 0 or negative count of items

if (count <= 0Q):

print ("Invalid number of items")
else:

totalCost = count * PRICE_PER ITEM

=====> Complete the line with the correct relational operator
if (totalCost > 0.0):

=====> Add a line to display an informative message and the total cost
print ("Total cost is", totalCost)

11

Question | MP Appx. | Answer Additional guidance Mark
number Line
4 Award marks as shown.
Inputs
Two integer inputs taken and assigned to different
4.1 i
variables (1)
Crisps
bagsCrisps =
(numAdults * CRISPS_PER_ADULT) +
(numChild * CRISPS_PER_CHILD)
4.2 Calculate partial bags of crisps (1)
e Allow 0.75 and 0.33 instead of
constants
Cheese
gramsCheese =
(numAdults * CHEESE_PER_ADULT) +
(numChild * CHEESE_PER_CHILD)
4.3 Calculate grams of cheese required (1)
e Allow 40, 30, and 500 instead of
constants
4.4 Selection symbol translated to if/else for cheese (1)
Rolls
numRolls =
(numAdults * ROLLS_PER_ADULT) +
(numChild * ROLLS_PER_CHILD)
4.5 Calculate number of partial rolls required (1)
e Allow 1.5, 0.5, and 24 instead of
constants (15)
4.6 Selection symbol translated to if/else for rolls (1)

12

Overall

Conditional tests for both cheese and rolls use

gramsCheese <= MIN_CHEESE
numRolls <= MIN_ROLLS

4.7 ; _
relational operator (<=) accurately (1) Allow:
o <
e Must be more than just the two
inputs in the flowchart to award this
4.8 Input and output messages are informative and fit for mark.

' purpose (1) e Must include code for messages for
five out of the nine possible
messages in the flowchart

One or more use of helpful white space AND one or .
4.9 e Ignore excessive comments
more use of helpful comments (1)
Use of given constants throughout, rather than hard- e Constants are involved in all
4.10 . , i .
coded values (1) relational and arithmetic expressions
Number conversions
math.ceil (<partial>)
Allow these, although the results
produced will be incorrect:
e round (<decimal>)
At least one instance of a syntactically accurate e round (<decimal>, 0)
4.11 expression to convert from decimal to whole number,

even if the result is not correct

int (<decimal>)

/1

Do not award

%
/

13

math.ceil() used correctly to convert at least one

math.ceil (gramsCheese / MIN_CHEESE)
math.ceil (numRolls)

4.12 decimal to whole number) .
e Can be awarded in addition to
MP4.11
Levels-based mark scheme to a maximum of 3, from:
e Sequencing and selection used to
4.13 control program flow
. . e input() and print() used to
4.14 Functionality (3) implement keyboard/console 1/0
4.15 e Built-in subprograms used to abstract
functionality
Test Data
Crisps Cheese Rolls
Test Data Adults Children Part.lal Bags to order Part.lal Order Part.lal Order
required required required
Set1 10 3 8.49 9 1 16.5 1
Set 2 45 14 38.37 39 74.5 4

14

Functionality (levels-based mark scheme)

(1] 1 2 3 Max.
Functionality (when the code Functionality (when the code Functionality (when the code 3
is run) is run) is run)

e The component parts of the e The component parts of the e The component parts of the
program are incorrect or program are complete, providing program are complete, providing
incomplete, providing a program a functional program that meets a functional program that fully

No of limited functionality that meets most of the stated requirements. meets the given requirements.

rewa some of the given requirements. | program outputs are mostly e Program outputs are accurate,
rdabl | ¢ Program outputs are of limited accurate and informative. informative, and suitable for the
€ _accuracy_ and/or provide limited e Program responds predictably to user.
n;iaat/e information. most of the anticipated input. e Program responds predictably to
e Program responds predictably to e Solution may not be robust anticipated input.
some of the anticipated input. within the constraints of the e Solution is robust within the
e Solution is not robust and may problem. constraints of the problem.
crash on anticipated or provided
input.

15

O do 0 WN

AN TN TR TS SSSESESEENEAELEWLDLWWWWWWWWWNNNNNONNNNNONE PR R R PR e
DA B WNRPRPOOVOEOIdAATTEWNRL,OOOJOAUEWNRPROOOJIONTE WNRPOWOWDJIOAUEWNROW®OIONUSWNEO©

Constants
o
CHEESE PER ADULT = 40 # Grams

CHEESE_PER_CHILD = 30 # Grams

MIN_CHEESE = 500 # 500 grams in a pack

ROLLS PER ADULT = 1.5 # Count

ROLLS_PER_CHILD = 0.5 # Count

MIN_ROLLS = 24 # Count of rolls in a pack
CRISPS_PER_ADULT = 0.75 # Of a bag

CRISPS PER CHILD = 0.33 # Of a bag
e
Global variables

=====> Write your code here

numAdults = 0

numChild = 0

gramsCheese = 0

orderCheese = 0

numRolls = 0.0

orderRolls = 0

bagsCrisps = 0.0

orderCrisps = 0

Main program

e
=====> Write your code here

Get the inputs
numAdults = int (input ("How many adults? "))
numChild = int (input ("How many children? "))

Calculate the bags of crisps required

bagsCrisps = (numAdults * CRISPS PER ADULT) + (numChild * CRISPS PER CHILD)
print ("Require: " + str (bagsCrisps) + " bags of crisps")

orderCrisps = math.ceil (bagsCrisps)

print ("Order " + str (orderCrisps) + " bags of crisps'")

Calculate amount of cheese required
gramsCheese = (numAdults * CHEESE PER ADULT) + (numChild * CHEESE PER CHILD)
print ("Require: " + str (gramsCheese) + " grams of cheese")
if (gramsCheese <= MIN CHEESE) :
print ("Order 1 pack of cheese")
else:
orderCheese = math.ceil (gramsCheese / MIN CHEESE)
print ("Order " + str (orderCheese) + " packs of cheese™)

Calculate the number of rolls required
numRolls = (numAdults * ROLLS PER ADULT) + (numChild * ROLLS PER CHILD)
print ("Require: " + str (numRolls) + " rolls")
numRolls = math.ceil (numRolls)
if (numRolls <= MIN ROLLS):
print ("Order 1 pack of rolls™)
else:
orderRolls = math.ceil (numRolls / MIN ROLLS)
print ("Order " + str (orderRolls) + " packs of rolls™)

16

Question | MP Appx. | Answer Additional guidance Mark
number Line
5 Award marks as shown.
getChoice()
51 menu item choice returned from getChoice()
' subprogram (1)
getShape()
Random number generated, even if upper bound is
5.2
not correct (1)
) random.randint (@, len (pTable) - 1)
53 Upper bound on random number is controlled by random.randint (0, len (pastaShapes) - 1)
length of the array (1) e Allow omission of -1
One-dimensional indexing used to access shape in * Ignore value of index inside the []
5.4 e Allow use of global pastaShapes, instead
array (1)
of pTable parameter
addShape()
Allow i t instead of d
5.5 String shape name is appended to array (1) ¢ ow Inser -|ns cad of appen)
e Allow even if global pastaShapes is target
Subprograms
addShape() and getShape() use the parameter e Do not award if pastaShapes appears
5.6 o ;
pTable to access the array (1) inside either subprogram
Main Program
Condition-controlled loop (while not choosing to
5.7 .
exit) (1)
53 Selection must handle all options (exit, get, add, e Allow switch statement
' show, error) (1) e Allow hard-coded rather than constants
5.9 Final call to getChoice() inside main loop (1) (15)

17

Levels-based mark scheme to a maximum of 6,
from:

Considerations for levels-based mark
scheme:

e [6.3.2] Consistent use of provided
constants for menu handling throughout
or use of switch statement with hard-

5.10 coded constant equivalents
5.11 Solution design (3) e [6.6.3] getShape() is implemented as a
512 function that returns a value
e [6.4.1] User message provided for invalid
choices (could be in main program loop
or in getChoice())
e [6.1.6] Get, add, and show function
513 correctly . | |
514 Functionality (3) e [6.4.1] Exits when option 4 is chosen at
both prompts
5.15

e [6.1.1] Subprogram calls match user
numbers selected from the menu

18

Test Data

Choice

Additional

Output

Note

Bigoli
Strozzapreti
Trofie

Gigli
Chitarra
Penne
Orecchiette
Tagliatelle
Chonchiglie
Fusilli

10 items

272277

Bigoli
Strozzapreti
Trofie

Gigli
Chitarra
Penne
Orecchiette
Tagliatelle
Chonchiglie
Fusilli
227277

11 items

A shape
from the
list

Check call to random.randint to make sure it will generate all items
from O to the length of the table - 1

A shape
from the
list

Invalid
input

The program should display an error message and loop. It may display
the menu again or it may not. Either way is acceptable.

Exits
program

19

Solution design (levels-based mark scheme)

(1] 1 2 3 Max.
There has been little attempt to There has been some attempt to The problem has been 3
decompose the problem. decompose the problem. decomposed clearly into
Some of the component parts of Most of the component parts of component parts.
the problem can be seen in the the problem can be seen in the The component parts of the
solution, although this will not be solution. problem can be seen clearly in

révv(\ja complete. Most parts of the logic are clear the solution.

rdabl Some parts of the logic are clear and appropriate to the problem. The logic is clear and appropriate

e and appropriate to the problem. The use of variables and data to the problem.

mate The use of variables and data structures is mostly appropriate. The choice of variables and data

rial structures, appropriate to the The choice of programming structures is appropriate to the
problem, is limited. constructs is mostly appropriate problem.
The choice of programming to the problem. The choice of programming
constructs, appropriate to the constructs is accurate and
problem, is limited. appropriate to the problem.

20

Functionality (levels-based mark scheme)

(1] 1 2 3 Max.
Functionality (when the code Functionality (when the code Functionality (when the code 3
is run) is run) is run)

e The component parts of the e The component parts of the e The component parts of the
program are incorrect or program are complete, providing program are complete, providing
incomplete, providing a program a functional program that meets a functional program that fully

No of limited functionality that meets most of the stated requirements. meets the given requirements.

rewa some of the given requirements. | program outputs are mostly e Program outputs are accurate,
rdabl | ¢ Program outputs are of limited accurate and informative. informative, and suitable for the
€ _accuracy_ and/or provide limited e Program responds predictably to user.
n;iaat/e information. most of the anticipated input. e Program responds predictably to
e Program responds predictably to e Solution may not be robust anticipated input.
some of the anticipated input. within the constraints of the e Solution is robust within the
e Solution is not robust and may problem. constraints of the problem.
crash on anticipated or provided
input.

21

[e IR e NI 62 T =S UV RN S I o

WWWwWwWwWwWwWwwwwMhdphppNDNNMNDMNDMNMNMNMNEFEFRRPRRPRRERRRE
ook WNhhPRPR OO WNRODWVUOJo U WP OW

pastaShapes = ["Bigoli", "Strozzapreti", "Trofie", "Gigli", "Chitarra",

"Penne", "Orecchiette”, "Tagliatelle",
"Fusilli"]

shape = ""
choice = 0

Get a menu item from the user
def getChoice ():
=====> Write your code here
menultem = 0
print ("1 - get a shape")
print ("2 - add a shape")
print ("3 - show the shapes")
print ("4 - exit program")

4 =====> Write your code here
menultem = int (input ("Enter a choice "))
return (menultem)

"Chonchiglie",

22

40 # Display all the shapes
41 def showShapes (pTable):

42 for pasta in pTable:
43 print (pasta)
44

45 # Get a random shape
46 def getShape (pTable):

47 # =====> Write your code here

48 aNumber = 0

49 theShape = ""

50

51l aNumber = random.randint (0, len (pTable) - 1)
572 theShape = pTable[aNumber]

52 return (theShape)

54

55 # Add a shape
56 def addShape (pTable):

57 # =====> Write your code here

58 shapeName = ""

59

60 shapeName = input ("Type the name to add ")
61 pTable.append (shapeName)

62

63 e e
64 # Main program

B — -
66

6/ choice = getChoice ()

68 # =====> Write your code here

69

70 while (choice != EXIT):

71 if (choice == GET):

72 shape = getShape (pastaShapes)

73 print ("Your shape 1s", shape)

74 elif (choice == ADD):

75 addShape (pastaShapes)

76 elif (choice == SHOW):

77 showShapes (pastaShapes)

78 else:

79 print ("That choice is invalid")

80 choice = getChoice ()

23

Question

Appx

MP . Answer Additional guidance Mark
number .
Line
6 Award marks as shown.
6.1 Process every record in the input file (1)
6.2 Strip off the line feed on the last field (1)
6.3 Split the line on the commas (1) e Requires argument of comma
6.4 First two characters of breed or name
' extracted (1)
int(tagNumb) // 100
int (fields[2 100
6.5 Number component of key calculated int (fields[2]) //
correctly (1) e Award calculation, even if number not in
correct place in the key
, e Must be accurate call with correct parameter
6.6 Subprogram called to display table (1) and no other extraneous operations
Levels-based mark scheme to a maximum of Considerations for levels-based mark scheme:
9, from:
e [6.4.2] Open file for reading and close if
6.7 Solution desi 3 required
6.8 olution design (3) e [6.2.2] Iteration is used appropriately
6.9 e [6.3.1] Data types and structures are used
appropriately
e [6.1.4] Program code is laid out in clear
6.10 sections; white space is used to show
6.11 Good programming practices (3) different parts of the solution/functionality
6.12 e [6.1.4] Variable names are meaningful;
comments are provided and are helpful in
explaining logic (15)

24

Functionality (3)

[6.3.1] Correct order for each field in the
record (key, tag, name, breed) and each
record in the table

[6.1.1] Use decomposition to solve problem
and create solution
[6.1.2] Write in a high-level language

25

Output:

['"Hi25An', '2569', 'Annabelle', 'Highland']
['Sh37Bo', '3798', 'Bonnie', 'Shetland']
['Be4d5Ca', '4521', 'Carmine', 'Belted Galloway']
['"Hi57De', '5736', 'Delores', 'Highland']
['Sh65Ev', '6504', 'Evette', 'Shetland']
['Be77Fr', '7713', 'Francis', 'Belted Galloway']

Award where tag number is an integer:

["Hi25An', 2569, 'Annabelle', 'Highland']
['Sh37Bo', 3798, 'Bonnie', 'Shetland']
['Be4d45Ca', 4521, 'Carmine', 'Belted Galloway']
['"Hi57De', 5736, 'Delores', 'Highland']
['Sh65EvV', 6504, 'Evette', 'Shetland']
['Be77Fr', 7713, 'Francis', 'Belted Galloway']

Award tuple output:

("Hi25An', '2569', 'Annabelle', 'Highland')
('"Sh37Bo', '3798', 'Bonnie', 'Shetland')
('Bed5Ca', '4521', 'Carmine', 'Belted Galloway')
('Hi57De', '5736', 'Delores', 'Highland')
('Sh65Ev', '6504', 'Evette', 'Shetland')
('Be77Fr', '7713'", 'Francis', 'Belted Galloway')

Do not award where each record is a single string
'Hi25An, 2569, Annabelle, Highland'

'Sh37Bo, 3798, Bonnie, Shetland'
'Bed45Ca,4521,Carmine,Belted Galloway'
'Hi57De, 5736,Delores,Highland’
'Sh65Ev, 6504, Evette, Shetland'
'Be77Fr, 7713, Francis,Belted Galloway'

26

Solution design (levels-based mark scheme)

(1] 1 2 3 Max.
There has been little attempt to There has been some attempt to The problem has been 3
decompose the problem. decompose the problem. decomposed clearly into
Some of the component parts of Most of the component parts of component parts.
the problem can be seen in the the problem can be seen in the The component parts of the
solution, although this will not be solution. problem can be seen clearly in

révv(\ja complete. Most parts of the logic are clear the solution.

rdabl Some parts of the logic are clear and appropriate to the problem. The logic is clear and appropriate

e and appropriate to the problem. The use of variables and data to the problem.

mate The use of variables and data structures is mostly appropriate. The choice of variables and data

rial structures, appropriate to the The choice of programming structures is appropriate to the
problem, is limited. constructs is mostly appropriate problem.
The choice of programming to the problem. The choice of programming
constructs, appropriate to the constructs is accurate and
problem, is limited. appropriate to the problem.

27

Good programming practices (levels-based mark scheme)

(1] 1 2 3 Max.
There has been little attempt to There has been some attempt to Layout of code is effective in 3
lay out the code into identifiable lay out the code to aid separating sections, e.g. putting
sections to aid readability. readability, although sections all variables together, putting all
Some use of meaningful variable may still be mixed. subprograms together as

No names. Uses mostly meaningful variable appropriate.

/CZ;VSI Limited or excessive names. Meaningful v_ariable names and

e commenting. Some use of appropriate suhbprogram m’_cetrfaces are used

; ere appropriate.
mate Parts of the code are clear, with commenting, although may be where appropri
rial limited use of appropriate excessive. Effective commenting is used to
spacing and indentation. Code is mostly clear, with some explain logic of code blocks.
use of appropriate white space to Code is clear, with good use of
aid readability. white space to aid readability.

28

Functionality (levels-based mark scheme)

(1] 1 2 3 Max.
Functionality (when the code Functionality (when the code Functionality (when the code 3
is run) is run) is run)

e The component parts of the e The component parts of the e The component parts of the
program are incorrect or program are complete, providing program are complete, providing
incomplete, providing a program a functional program that meets a functional program that fully

No of limited functionality that meets most of the stated requirements. meets the given requirements.

rewa some of the given requirements. | program outputs are mostly e Program outputs are accurate,
rdabl | ¢ Program outputs are of limited accurate and informative. informative, and suitable for the
€ _accuracy_ and/or provide limited e Program responds predictably to user.
n;iaat/e information. most of the anticipated input. e Program responds predictably to
e Program responds predictably to e Solution may not be robust anticipated input.
some of the anticipated input. within the constraints of the e Solution is robust within the
e Solution is not robust and may problem. constraints of the problem.
crash on anticipated or provided
input.

29

W oo -Jo b WwhR

WWWWwWwWWwWwWwWwWwhNhdNNNDNDNMNNMMNNMNMNNNMNNERERRPRPRPRRRRRERE
o JoUubdkWNhNRFRPROWVWODJOOE WNREPOWIYU &WNE O

40
41
42

=====> Write your code here
fields = []

key = ""

record = []

Subprograms

__

def showTable (pTable):
for cow in pTable:
print (cow)

B e
Main program

__
=====> Write your code here

file = open ("Cows.txt", "r'")

Process all lines in the file
for line in file:

line = line.strip()

fields = line.split (",")

Build the key

key = fields[1]1[0]1 + fields[1]1[11]

key key + str (int (fields[21) // 100)
key key + fields[0][0] + fields[O][1]

Construct the record
record = [key, fields[2], fields[0], fields[1]]

Save the new record
cowTable.append (record)

showTable (cowTable)

file.close ()

30

